26: Linear Regression and Gradient Ascent

Jerry Cain
May 26, 2021
Linear Regression
Today’s goals

We are going to learn linear regression.
• Also known as "fit a straight line to data"
• However, linear models are too simple for more complex datasets.
• Furthermore, many tasks in CS deal with classification (categorical data), not regression.

We cover this topic to learn important techniques that will help us design and understand more complicated ML algorithms:
1. How to model likelihood of training data \((x^{(i)}, y^{(i)})\)
2. What rules of argmax/calculus are important to remember
3. What gradient ascent is and why it is useful
Regression: Predicting real numbers

Training data: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\)

CO2 levels

<table>
<thead>
<tr>
<th>Year</th>
<th>CO2 Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>338.8</td>
</tr>
<tr>
<td>2</td>
<td>340.0</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>340.76</td>
</tr>
</tbody>
</table>

\(X = (X_1)\)
(assume one feature)

Output

<table>
<thead>
<tr>
<th>Year</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>0.32</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Global Land-Ocean temperature

Model: \(\hat{Y} = g(X)\),
for some parametric function \(g\)
Linear Regression

Assume linear model (and X is 1-D):

$$\hat{Y} = g(X) = aX + b$$

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})$

Learn parameters $\theta = (a, b)$

Two approaches:
- Analytical solution via mean squared error
- Iterative solution via MLE and gradient ascent
Linear Regression: MSE
Mean Squared Error (MSE)

For regression tasks, we usually want a $g(X)$ that minimizes MSE:

$$\theta_{MSE} = \arg\min_{\theta} \mathbb{E}[(Y - \hat{Y})^2] = \arg\min_{\theta} \mathbb{E}[(Y - g(X))^2]$$

- Y and $\hat{Y} = g(X)$ are both random variables
- Intuitively: Choose parameter θ that minimizes the expected squared deviation ("error") of your prediction \hat{Y} from the true Y

For linear regression, where $\theta = (a, b)$ and $\hat{Y} = aX + b$:

$$\mathbb{E}[(Y - aX - b)^2]$$
Don’t make me get non-linear!

$$\theta_{MSE} = \arg \min_{\theta=(a,b)} E[(Y - aX - b)^2]$$

$$a_{MSE} = \rho(X,Y) \frac{\sigma_Y}{\sigma_X}, \quad b_{MSE} = \mu_Y - a_{MSE} \mu_X$$

Can we find these statistics on X and Y from our training data?
Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$

Not exactly, but we can estimate them!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Don’t make me get non-linear!

$$\theta_{MSE} = \arg \min_{\theta=(a,b)} E[(Y - aX - b)^2]$$

$$a_{MSE} = \rho(X,Y) \frac{\sigma_Y}{\sigma_X}, \quad b_{MSE} = \mu_Y - a_{MSE} \mu_X$$

(Derivation included at the end of slides)

Can we find these statistics on X and Y from our training data?

Training data: $$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})$$

Estimate parameters based on observed training data:

$$\hat{a}_{MSE} = \hat{\rho}(X,Y) \frac{S_Y}{S_X}, \quad \hat{b}_{MSE} = \bar{Y} - \hat{a}_{MSE} \bar{X}$$

$\hat{\rho}(X,Y)$: Sample correlation (Wikipedia)
Linear Regression

Assume linear model (and X is 1-D):

$$\hat{Y} = g(X) = aX + b$$

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})$

Learn parameters $\theta = (a, b)$

If we want to minimize the mean squared error of our prediction,

$$\hat{\alpha}_{\text{MSE}} = \hat{\rho}(X, Y) \frac{S_Y}{S_X}, \quad \hat{b}_{\text{MSE}} = \bar{Y} - \hat{\alpha}_{\text{MSE}} \bar{X}$$
Linear Regression: MLE
Linear Regression

Assume linear model (and X is 1-D):

$$\hat{Y} = g(X) = aX + b$$

Learn parameters $\theta = (a, b)$

Training data: $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})$

We’ve seen which parameters minimize mean squared error.

What if we want parameters that maximize the likelihood of the training data?

Note: Maximizing likelihood is typically an objective for classification models.
Likelihood, it’s been a minute

Consider a sample of n i.i.d. random variables X_1, X_2, \ldots, X_n.

- X_i was drawn from a distribution with density function $f(X_i|\theta)$.
- Observed data: (X_1, X_2, \ldots, X_n)

Likelihood question:

How likely is the observed data (X_1, X_2, \ldots, X_n) given parameter θ?

Likelihood function, $L(\theta)$:

$$L(\theta) = f(X_1, X_2, \ldots, X_n|\theta) = \prod_{i=1}^{n} f(X_i|\theta)$$

This is just a product, since X_i are i.i.d.
Likelihood of the training data

Training data (n datapoints):
• \((x^{(i)}, y^{(i)})\) drawn i.i.d. from a distribution \(f(X = x^{(i)}, Y = y^{(i)} | \theta) = f(x^{(i)}, y^{(i)} | \theta)\)
• \(\hat{Y} = g(X)\), where \(g(\cdot)\) is a function with parameter \(\theta\)

We can show that \(\theta_{MLE}\) maximizes the log conditional likelihood function:

\[
\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)
\]

(Shorthand)

\[\prod_{i=1}^{n} f(x^{(i)}, y^{(i)} | \theta)\]
Linear Regression, MLE

1. Assume linear model (and X is 1-D):

$$\hat{Y} = g(X) = aX + b$$

2. Define maximum likelihood estimator:

$$\theta_{MLE} = \arg \max_\theta \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

⚠ Issue: We have a model for \hat{Y}, not Y

- Remember the MSE approach, where we minimize the squared error between \hat{Y} and Y?
- Now, we model this error directly!

$$Y = \hat{Y} + Z$$

(error/noise)

(error/noise) (also random)
Comparison: MSE vs MLE

\[\hat{Y} = g(X) = aX + b \]

Minimum Mean Squared Error

\[\theta_{MSE} = \arg \min_{\theta} E \left[(Y - g(X))^2 \right] \]

- Do not directly model \(Y \) (nor error)
- Parameters are estimates of statistics from training data:
 \[\hat{a}_{MSE} = \hat{\rho}(X, Y) \frac{S_Y}{S_X} \]
 \[\hat{b}_{MSE} = \bar{Y} - \hat{a}_{MSE} \bar{X} \]

Maximum Likelihood Estimation

\[\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) \]

- Directly model error between predicted \(\hat{Y} \) and \(Y \)
 \[Y = \hat{Y} + Z = aX + b + Z \]

If we assume error \(Z \sim \mathcal{N}(0, \sigma^2) \), then these two estimators are equivalent.

\[\theta_{MSE} = \theta_{MLE}! \]
Linear Regression, MLE (next steps)

1. Assume linear model (and X is 1-D):
 \[\hat{Y} = g(X) = aX + b \]

2. Define maximum likelihood estimator:
 \[\theta_{MLE} = \arg\max_\theta \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) \]

3. Model error, Z:
 \[Y = aX + b + Z, \text{ where } Z \sim \mathcal{N}(0, \sigma^2) \]

4. Pick $\theta = (a, b)$ that maximizes likelihood of training data

We will not analytically find a solution. Instead, we are going to use gradient ascent, an iterative optimization algorithm.
Gradient
Ascent
Multiple ways to calculate argmax

Let $f(x) = -x^2 + 4$, where $-2 < x < 2$.

What is $\text{arg max}_x f(x)$?

A. Graph and guess

B. Differentiate, set to 0, and solve

$$\frac{df}{dx} = -2x = 0$$

$x = 0$

C. Gradient ascent: educated guess & check

objective function
Gradient ascent

Walk uphill and you will find a local maxima (if your step is small enough).

If your function is concave, Local maxima = global maxima
Gradient ascent algorithm

Walk uphill and you will find a local maxima (if your step is small enough).

Let \(f(x) = -x^2 + 4 \), where \(-2 < x < 2\).

1. \(\frac{df}{dx} = -2x \) Gradient at \(x \)

2. Gradient ascent algorithm:

 initialize \(x \)
 repeat many times:
 compute gradient
 \(x += \eta \times \text{gradient} \)
Computing the MLE

General approach for finding $\theta_{\text{MLE}} = \arg \max_\theta LL(\theta)$:

1. Determine formula for $LL(\theta)$

 $LL(\theta) = \sum_{i=1}^{n} \log f(X_i|\theta)$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

 $\frac{\partial LL(\theta)}{\partial \theta}$

3. Solve resulting (simultaneous) equations

 To maximize: $\frac{\partial LL(\theta)}{\partial \theta} = 0$

 (algebra or computer)

If algebra is intractable, we can still find a maximum using gradient ascent!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
Linear Regression, MLE (so far)

Assume linear model (and \(X\) is 1-D):

\[
\hat{Y} = g(X) = aX + b
\]

Model error, \(Z\):

\[
Y = aX + b + Z, \text{ where } Z \sim \mathcal{N}(0, \sigma^2)
\]

Pick \(\theta = (a, b)\) that maximizes likelihood of training data

\[
\theta_{MLE} = \arg \max_{\theta} LL(\theta)
\]

\[
= \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}, y^{(i)}, |\theta)
\]

\[
= \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}| x^{(i)}, \theta)
\]

(\(\theta_{MLE}\) also maximizes log conditional likelihood)
Computing the MLE with gradient ascent

General approach for finding θ_{MLE}, the MLE of θ:

1. Determine formula for $LL(\theta)$

 \[\sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) \]

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

 \[\frac{\partial}{\partial \theta_j} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) \]

3. Solve resulting equations
 (computer)

Gradient Ascent

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
1. Determine formula for log conditional likelihood

Model: \(\theta = (a, b) \)
\[
\hat{Y} = aX + b + Z \\
Z \sim \mathcal{N}(0, \sigma^2)
\]

Optimization problem:
\[
\arg\max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}| x^{(i)}, \theta)
\]

Over the next few slides, we will show that our MLE linear regression \(\theta_{MLE} \) reduces to

\[
\arg\max_{\theta} \left[-\sum_{i=1}^{n} (\hat{y}^{(i)} - ax^{(i)} - b)^2 \right]
\]

objective function
1. **Determine formula for log conditional likelihood**

<table>
<thead>
<tr>
<th>Model:</th>
<th>Optimization problem:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = (a, b)$</td>
<td>$\arg\max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}</td>
</tr>
<tr>
<td>$Y = aX + b + Z$</td>
<td></td>
</tr>
<tr>
<td>$Z \sim \mathcal{N}(0, \sigma^2)$</td>
<td>$\arg\max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$</td>
</tr>
</tbody>
</table>

1. What is the conditional distribution, $Y|X, \theta$?

2. Substitute **1.** into objective fn.

3. Use argmax properties to simplify objective fn.
1. Determine formula for log conditional likelihood

Model: $\theta = (a, b)\\ Y = aX + b + Z\\ Z \sim \mathcal{N}(0, \sigma^2)$

Optimization problem: $\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta)$

1. What is the conditional distribution, $Y|X, \theta$?

$Y|X, \theta \sim \mathcal{N}(aX + b, \sigma^2)$

$f(y^{(i)}|x^{(i)}, \theta) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\left(y^{(i)}-(ax^{(i)}+b)^2/(2\sigma^2)\right)}$

2. Substitute 1. into objective fn.

$\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta) = \arg \max_{\theta} \sum_{i=1}^{n} \log \left[\frac{1}{\sqrt{2\pi \sigma}} e^{-(y^{(i)}-ax^{(i)}-b)^2/(2\sigma^2)} \right]$

using natural log $= \arg \max_{\theta} \left[\sum_{i=1}^{n} -\log \sqrt{2\pi \sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$
1. Determine formula for log conditional likelihood

Model: \(\theta = (a, b) \)
\[Y = aX + b + Z \]
\[Z \sim \mathcal{N}(0, \sigma^2) \]

Optimization problem:
\[\arg \max_\theta \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta) \]

3. Use argmax properties to simplify objective fn.

\[
\begin{align*}
\arg \max_\theta & \left[\sum_{i=1}^{n} -\log \sqrt{2\pi\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] \\
= & \arg \max_\theta \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] \\
= & \arg \max_\theta \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]
\end{align*}
\]

Argmax refresher #1: Invariant to additive constants

Argmax refresher #2: Invariant to positive constant scalars
1. **Determine formula for log conditional likelihood**

Model:

\[
\begin{align*}
\theta &= (a, b) \\
Y &= aX + b + Z \\
Z &\sim \mathcal{N}(0, \sigma^2)
\end{align*}
\]

Optimization problem:

\[
\arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta)
\]

4. **Celebrate!**

\[
\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]
\]
Computing the MLE with gradient ascent

General approach for finding θ_{MLE}, the MLE of θ:

1. Determine formula for $LL(\theta)$

 \log conditional likelihood

 $\sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta)$

 $h(\theta) = - \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

 \[
 \frac{\partial}{\partial \theta_j} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta)
 \]

 2-D gradient:

 \[
 \left(\frac{\partial h(\theta)}{\partial a}, \frac{\partial h(\theta)}{\partial b} \right)
 \]

3. Solve resulting (simultaneous) equations

 (computer) Gradient Ascent
2. Compute gradient

Model: $\theta = (a, b)$
$Y = aX + b + Z$
$Z \sim \mathcal{N}(0, \sigma^2)$

Optimization problem: $\arg\max_{\theta} \left[- \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]$

Calculus refresher #1:
Derivative(sum) = sum(derivative)

Calculus refresher #2:
Chain rule ★ ★ ★

1. What is the derivative of the objective function w.r.t. a?

$$\frac{\partial}{\partial a} \left[- \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] =$$

2. What is the derivative of the objective function w.r.t. b?
2. Compute gradient

Model: \(\theta = (a, b) \)
\(Y = aX + b + Z \)
\(Z \sim \mathcal{N}(0, \sigma^2) \)

Optimization problem:
\[
\arg \max_\theta \left[- \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]
\]

1. What is the derivative of the objective function w.r.t. \(a \)?

\[
\frac{\partial}{\partial a} \left[- \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] =
\]

Calculus refresher #1:
Derivative(sum) = sum(derivative)

Calculus refresher #2:
Chain rule 🌟 🌟 🌟
2. Compute gradient

Model: \(\theta = (a, b) \)
\[Y = aX + b + Z \]
\(Z \sim \mathcal{N}(0, \sigma^2) \)

Optimization problem:
\[
\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y(i) - ax(i) - b)^2 \right]
\]

1. What is the derivative of the objective function w.r.t. \(a \)?
\[
\sum_{i=1}^{n} 2(y(i) - ax(i) - b)(x(i))
\]

2. What is the derivative of the objective function w.r.t. \(b \)?
\[
\sum_{i=1}^{n} 2(y(i) - ax(i) - b)
\]

analytical solution for \(a_{MLE}, b_{MLE} \): Set to 0 and solve simultaneous equations

Next up: We will reach the same solution **computationally with gradient ascent.**
Computing the MLE with gradient ascent

General approach for finding θ_{MLE}, the MLE of θ:

1. Determine formula for $LL(\theta)$

 \log conditional likelihood

 $\sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta)$

 $h(\theta) = - \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

 $\frac{\partial}{\partial \theta_j} \sum_{i=1}^{n} \log f(y^{(i)}|x^{(i)}, \theta)$

 $\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})$

 $\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)$

3. Solve resulting (simultaneous) equations

 (computer)

 Gradient Ascent

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2021
3. Gradient ascent with multiple parameters (if time)

Optimization problem: \[
\arg\max_\theta \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] = \arg\max_\theta h(\theta)
\]

Gradient: \[
\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})
\]
\[
\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)
\]

initialize \(\theta \)
repeat many times:
compute gradient
\(\theta \ += \eta * \text{gradient} \)

How does this work for multiple parameters?
3. Gradient ascent with multiple parameters

Optimization problem:

\[\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] = \arg \max_{\theta} h(\theta) \]

Gradient:

\[\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)}) \]
\[\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b) \]

\[
\begin{align*}
a, \ b &= 0, 0 \quad \# \text{initialize } \theta \\
\text{repeat many times:} & \\
\text{gradient}_a, \ \text{gradient}_b &= 0, 0 \quad \# \text{TODO: fill in} \\
a &= \eta \times \text{gradient}_a \quad \# \theta = \eta \times \text{gradient}_a \\
b &= \eta \times \text{gradient}_b
\end{align*}
\]

How do we pseudocode the gradients we derived?
3. Gradient ascent with multiple parameters

Optimization problem: \[
\arg \max_\theta \left[-\sum_{i=1}^n (y^{(i)} - ax^{(i)} - b)^2 \right]
\]

\[
= \arg \max_\theta h(\theta)
\]

Gradient: \[
\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^n 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})
\]

\[
\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^n 2(y^{(i)} - ax^{(i)} - b)
\]

\[
a, b = 0, 0 \quad \# \text{initialize } \theta
\]
repeat many times:

\begin{verbatim}
gradient_a, gradient_b = 0, 0
for each training example (x, y):
diff = y - (a * x + b)
gradient_a += 2 * diff * x
gradient_b += 2 * diff

a += \eta * gradient_a \quad \# \theta += \eta * gradient
b += \eta * gradient_b
\end{verbatim}

Finish computing gradient before updating any part of \(\theta \).

(Spring 2021 demo)
Global land-ocean temperature prediction

Training data: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\)

<table>
<thead>
<tr>
<th>Year</th>
<th>CO2 levels</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>338.8</td>
<td>0.26</td>
</tr>
<tr>
<td>2</td>
<td>340.0</td>
<td>0.32</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>n</td>
<td>340.76</td>
<td>0.14</td>
</tr>
</tbody>
</table>

\[X = (X_1) \]
(assume one feature)

\[Y \in \mathbb{R} \]

Minimizing Mean Square Error

\[\theta_{MSE} = \arg\min_{\theta} E \left[(Y - g(X))^2 \right] \]

\[\hat{Y} = \hat{\rho}(X, Y) \frac{S_Y}{S_X} (X - \bar{X}) + \bar{Y} \]

\[a_{MSE} = 0.01452 \]

\[b_{MSE} = 0.17511 \]
3b. Interpret

Optimization problem:
\[\arg\max_\theta \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] = \arg\max_\theta h(\theta) \]

Gradient:
\begin{align*}
\frac{\partial h(\theta)}{\partial a} &= \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)}) \\
\frac{\partial h(\theta)}{\partial b} &= \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)
\end{align*}

Initialization:
\[a, b = 0, 0 \] # initialize \(\theta \)

Updates to \(a \) and \(b \) should include information from all \(n \) training datapoints.

repeat many times:
\[
\text{gradient}_a, \text{gradient}_b = 0, 0 \]

for each training example \((x, y)\):
\[
\text{diff} = y - (a \times x + b)
\]

\[
\text{gradient}_a += 2 \times \text{diff} \times x \\
\text{gradient}_b += 2 \times \text{diff}
\]

\[
a += \eta \times \text{gradient}_a \quad # \theta += \eta \times \text{gradient} \\
b += \eta \times \text{gradient}_b
\]
3b. Interpret

Optimization problem: \[
\arg \max_{\theta} \left[- \sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right]
\]

= \arg \max_{\theta} h(\theta)

Gradient:
\[
\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})
\]
\[
\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)
\]

a, b = 0, 0 # initialize \(\theta \)

repeat many times:

For each training example \((x, y)\):

\[
\text{diff} = y - (a \times x + b)
\]
\[
\text{gradient}_a += 2 \times \text{diff} \times x
\]
\[
\text{gradient}_b += 2 \times \text{diff}
\]

\[a += \eta \times \text{gradient}_a \]
\[b += \eta \times \text{gradient}_b\]

How do we interpret the contribution of the i-th training datapoint?
3b. Interpret

Optimization problem: \[\arg\max_\theta \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] \]
\[= \arg\max_\theta h(\theta) \]

Gradient:
\[\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)}) \]
\[\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b) \]

\[a, b = 0, 0 \]
initialize \(\theta \)

repeat many times:

gradient_a, gradient_b = 0, 0
for each training example \((x, y)\):
 \(\text{diff} = y - (a * x + b) \)
 gradient_a += 2 * diff * x
 gradient_b += 2 * diff

\[a += \eta * \text{gradient}_a \]
\(\theta += \eta * \text{gradient} \)
\[b += \eta * \text{gradient}_b \]

Prediction error!
\[y^{(i)} - \hat{y}^{(i)} \]
3b. Interpret

Optimization problem: \[\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] \]

\[= \arg \max_{\theta} h(\theta) \]

Gradient:
\[\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)}) \]
\[\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b) \]

\[a, b = 0, 0 \]

\# initialize \(\theta \)

repeat many times:

\[
\text{gradient}_a, \text{gradient}_b = 0, 0 \\
\text{for each training example} (x, y): \\
\text{prediction}_error = y - (a \times x + b) \\
\text{gradient}_a += 2 \times \text{prediction}_error \times x \\
\text{gradient}_b += 2 \times \text{prediction}_error \\
\]

\[a += \eta \times \text{gradient}_a \] \# \(\theta += \eta \times \text{gradient} \)
\[b += \eta \times \text{gradient}_b \]
3b. Interpret

Optimization problem: \[\arg\max_\theta \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] \]

= \arg\max_\theta h(\theta)

Gradient:
\[
\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)}) \\
\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)
\]

\[
\hat{Y} = ax + b, \text{ so update to } a \text{ should also scale by } x^{(i)}
\]

a, b = 0, 0 # initialize θ
repeat many times:

gradient_a, gradient_b = 0, 0
for each training example (x, y):
 prediction_error = y - (a * x + b)
 gradient_a += 2 * prediction_error * x
 gradient_b += 2 * prediction_error

a += η * gradient_a # θ += η * gradient
b += η * gradient_b
3b. Interpret

Optimization problem: \[\arg \max_{\theta} \left[-\sum_{i=1}^{n} (y^{(i)} - ax^{(i)} - b)^2 \right] \]

Gradient:
\[
\frac{\partial h(\theta)}{\partial a} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)(x^{(i)})
\]
\[
\frac{\partial h(\theta)}{\partial b} = \sum_{i=1}^{n} 2(y^{(i)} - ax^{(i)} - b)
\]

a, b = 0, 0 # initialize \(\theta \)

repeat many times:

```
gradient_a, gradient_b = 0, 0
for each training example (x, y):
    prediction_error = y - (a * x + b)
    gradient_a += 2 * prediction_error * x
    gradient_b += 2 * prediction_error * 1
a += \eta * gradient_a  # \theta += \eta * gradient
b += \eta * gradient_b
```

\(\hat{Y} = aX + b \), so update to \(b \) just scales by 1, not \(x^{(i)} \)
Reflecting on today

We did a lot today!
• Learned gradient ascent
• Modeled likelihood of training dataset
• Thanked argmax for its convenience
• Remembered calculus
• Implemented gradient ascent with multiple parameters to optimize for

Next up, we will use all these skills and more to tackle the final prediction model of CS109:

Logistic Regression
Extra: Derivations
Don’t make me get non-linear!

\[\theta_{MSE} = \arg \min_{\theta=(a,b)} E[(Y - aX - b)^2] \]

1. Differentiate w.r.t. (each) \(\theta \), set to 0

\[\frac{\partial}{\partial a} E[(Y - aX - b)^2] = E \left[\frac{\partial}{\partial a} (Y - aX - b)^2 \right] = E[-2(Y - aX - b)X] = -2E[XY] + 2aE[X^2] + 2bE[X] \]

\[\frac{\partial}{\partial b} E[(Y - aX - b)^2] = E[-2(Y - aX - b)] = -2E[Y] + 2aE[X] + 2b \]

2. Solve resulting simultaneous equations

\[a_{MSE} = \frac{E[XY] - E[X]E[Y]}{E[X^2] - (E[X])^2} = \frac{\text{Cov}(X,Y)}{\text{Var}(X)} = \rho(X,Y) \frac{\sigma_Y}{\sigma_X} \]

\[b_{MSE} = E[Y] - a_{MSE} E[X] = \mu_Y - \rho(X,Y) \frac{\sigma_Y}{\sigma_X} \mu_X \]
Log conditional likelihood, a derivation

Show that θ_{MLE} maximizes the log conditional likelihood function:

$$\theta_{MLE} = \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

Proof:

$$\theta_{MLE} = \arg \max_{\theta} \prod_{i=1}^{n} f(x^{(i)}, y^{(i)} | \theta) = \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}, y^{(i)} | \theta)$$

$$(\theta_{MLE} \text{ also maximizes } LL(\theta))$$

$$(\text{chain rule, log of product = sum of logs})$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)} | \theta) + \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

$$(x^{(i)} \text{ indep. of } \theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(x^{(i)}) + \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$

$$(f(x^{(i)}) \text{ constant w.r.t. } \theta)$$

$$= \arg \max_{\theta} \sum_{i=1}^{n} \log f(y^{(i)} | x^{(i)}, \theta)$$