Section #4 Solutions

Based on contributions of many CS109 staff members.

1 Warmups

1.1 Joint Distributions

1. Given a Normal RV $X \sim N(\mu, \sigma^2)$, how can we compute $P(X \leq x)$ from the standard Normal distribution Z with CDF ϕ?

2. What is a continuity correction and when should we use it?

3. If we have a joint PMF for discrete random variables $p_{X,Y}(x, y)$, how can we compute the marginal PMF $p_X(x)$?

1. First, we write $\phi((x - \mu)/\sigma)$. We then look up the value we’ve computed in the Standard Normal Table.

2. Continuity correction is used when a Normal distribution is used to approximate a Binomial. Since a Normal is continuous and Binomial is discrete, we have to use a continuity correction to discretize the Normal. The continuity correction makes it so that the normal variable is evaluated from + or - 0.5 increments from the desired k value.

3. The marginal distribution is $p_X(x) = \sum_y p_{X,Y}(x, y)$

1.2 Independent Random Variables

1. What distribution does the sum of two independent binomial RVs $X + Y$ have, where $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$? Include the parameter(s) in your answer. Why is this the case?

2. What distribution does the sum of two independent Poisson RVs $X + Y$ have, where $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$? Include the parameter(s) in your answer.

1. Binomial; $X + Y \sim Bin(n_1 + n_2, p)$

2. Poisson; $X + Y \sim Poi(\lambda_1 + \lambda_2)$
1.3 Joint Random Variables Statistics

True or False? The symbol Cov is covariance, and the symbol ρ is Pearson correlation. And $X \perp Y$ is just a fancy way to say that X and Y are independent.

\[X \perp Y \implies \text{Cov}(X, Y) = 0 \quad | \quad \text{Var}(X + X) = 2\text{Var}(X) \]

\[\text{Cov}(X, Y) = 0 \implies X \perp Y \quad | \quad X \sim N(0, 1) \wedge Y \sim N(0, 1) \implies \rho(X, Y) = 1 \]

\[Y = X^2 \implies \rho(X, Y) = 1 \quad | \quad Y = 3X \implies \rho(X, Y) = 3 \]

True or False?

<table>
<thead>
<tr>
<th>True</th>
<th>False (antecedent necessary, not sufficient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>False (don’t know how independent X & Y are)</td>
<td>False ($\ldots = 4\text{Var}(X)$)</td>
</tr>
<tr>
<td>False ($Y = X \implies \ldots$)</td>
<td>False ($\ldots = 1$)</td>
</tr>
</tbody>
</table>

2 Problems

2.1 Elections

We would like to see how we could predict an election between two candidates in France (A and B), given data from 10 polls. For each of the 10 polls, we report below their sample size, how many people said they would vote for candidate A, and how many people said they would vote for candidate B. Not all polls are created equal, so for each poll we also report a value "weight" which represents how accurate we believe the poll was. The data for this problem can be found on the class website in polls.csv:

<table>
<thead>
<tr>
<th>Poll</th>
<th>N samples</th>
<th>A votes</th>
<th>B votes</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>862</td>
<td>548</td>
<td>314</td>
<td>0.93</td>
</tr>
<tr>
<td>2</td>
<td>813</td>
<td>542</td>
<td>271</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>984</td>
<td>682</td>
<td>302</td>
<td>0.82</td>
</tr>
<tr>
<td>4</td>
<td>443</td>
<td>236</td>
<td>207</td>
<td>0.87</td>
</tr>
<tr>
<td>5</td>
<td>863</td>
<td>497</td>
<td>366</td>
<td>0.89</td>
</tr>
<tr>
<td>6</td>
<td>648</td>
<td>331</td>
<td>317</td>
<td>0.81</td>
</tr>
<tr>
<td>7</td>
<td>891</td>
<td>552</td>
<td>339</td>
<td>0.98</td>
</tr>
<tr>
<td>8</td>
<td>661</td>
<td>479</td>
<td>182</td>
<td>0.79</td>
</tr>
<tr>
<td>9</td>
<td>765</td>
<td>609</td>
<td>156</td>
<td>0.63</td>
</tr>
<tr>
<td>10</td>
<td>523</td>
<td>405</td>
<td>118</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Totals: 7453 4881 2572

a. First, assume that each sample in each poll is an independent experiment of whether or not a random person in France would vote for candidate A (disregard weights).
Calculate the probability that a random person in France votes for candidate A.

Assume each person votes for candidate A with the probability you’ve calculated and otherwise votes for candidate B. If the population of France is 64,888,792, what is the probability that candidate A gets more than half of the votes?

b. Nate Silver at fivethirtyeight pioneered an approach called the "Poll of Polls" to predict elections. For each candidate A or B, we have a random variable S_A or S_B which represents their strength on election night (like ELO scores). The probability that A wins is $P(S_A > S_B)$.

- Identify the parameters for the random variables S_A and S_B. Both S_A and S_B are defined to be normal with the following parameters:

$$S_A \sim \mathcal{N}\left(\mu = \sum_i p_{A_i} \cdot \text{weight}_i, \sigma^2\right)$$

$$S_B \sim \mathcal{N}\left(\mu = \sum_i p_{B_i} \cdot \text{weight}_i, \sigma^2\right)$$

where p_{A_i} is the ratio of A votes to N samples in poll i, p_{B_i} is the ratio of B votes to N samples in poll i, weight is the weight of poll i, m_i is the N samples in poll i and:

$$\sigma = \frac{K}{\sqrt{\sum_i m_i}} \text{ s.t. } K = 350; \text{ thus } \sigma = 4.054.$$

- We will calculate $P(S_A > S_B)$ by simulating 100,000 fake elections. In each fake election, we draw a random sample for the strength of A from S_A and a random sample for the strength of B from S_B. If S_A is greater than S_B, candidate A wins. What do we expect to see if we simulate so many times? What do we actually see?

c. Which model, the one from (a) or the model from (b) seems more appropriate? Why might that be the case? On election night candidate A wins. Was your prediction from part (b) "correct"?

a. $P(\text{random person votes for A}) = \frac{\text{votes for A}}{\text{total votes}} = \frac{48817453}{64888792} = 0.655$

Now, let X be the number of votes for candidate A. We assume that $X \sim \text{Bin}(64888792, 0.655)$.

- Since n is so large, we can approximate X using a normal $Y \sim \mathcal{N}(np, np(1-p))$.

- $\mu = np = 42502158.76$, Variance = $np(1 - p) = 14663244.77$ Std Dev = 3829.26

- Votes to win = $\frac{64888792}{2} = 32444396$

- $P(\text{A gets enough votes}) = P(X > 32444396) \approx P(Y > 32444396.5) = 1.00$

b. $S_A \sim \mathcal{N}(5.324, 16.436)$

$S_B \sim \mathcal{N}(2.926, 16.436)$

$P(S_A > S_B) \approx 0.66$
We can figure this out through simulation by drawing from S_A and S_B 100,000 times and seeing how often the S_A value is greater than the S_B value. Later in the quarter, when we learn the convolution of independent normals, you will be able to figure this out mathematically.

c. Algorithm (a) makes very few assumptions, and simplicity can be useful, but it does assume that each voter is independent - which we definitely know isn’t the case in real elections. Algorithm (b) allows us to model bias (using the weights we incorporated), and doesn’t think of each voter as necessarily independent.

2.2 Approximating Normal

Your website has 100 users and each day each user independently has a 20% chance of logging into your website. Use a normal approximation to estimate the probability that more than 21 users log in.

The number of users that log in B is binomial: $B \sim \text{Bin}(n = 100, p = 0.2)$. It can be approximated with a normal that matches the mean and variance. Let C be the normal that approximates B. We have $E[B] = np = 20$ and $Var(B) = np(1 - p) = 16$, so $C \sim N(\mu = 20, \sigma^2 = 16)$. Note that because we are approximating a discrete value with a continuous random variable, we need to use the continuity correction:

\[
P(B > 21) \approx P(C > 21.5)
= P\left(\frac{C - 20}{\sqrt{16}} > \frac{21.5 - 20}{\sqrt{16}}\right)
= P(Z > 0.375)
= 1 - P(Z < 0.375)
= 1 - \Phi(0.375) = 1 - 0.6462 = 0.3538
\]