1 Warmups

1.1 Sums of Random Variables

For each X and Y below, let X and Y be independent.

1. Let $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$. What is μ and σ^2 for $X + Y \sim N(\mu, \sigma^2)$?

2. Let $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1)$. What is the PDF for $X + Y$?

3. In general, two random variables X and Y, what is the PDF f of $X + Y$?

Answer.

1. $\mu = \mu_1 + \mu_2$ and $\sigma^2 = \sigma_1^2 + \sigma_2^2$. How convenient!

2. $f_{X+Y}(a) = \begin{cases} a & 0 \leq a \leq 1 \\ 2 - a & 1 \leq a \leq 2 \\ 0 & \text{otherwise} \end{cases}$

3. $f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$

 It is good to remember these equations, but perhaps another message from lecture that it is difficult to sum random variables. The derivation for Uniform distributions is difficult. And solving for the general random variables is even worse. But we can pick distributions, like the Normal distribution, that are easy to use!

1.2 General Inference

Suppose X_1, \ldots, X_4 are discrete random variables. We will abuse notation and write $p(x_1, x_2, x_3, x_4)$ to represent $P(X_1 = x_1, X_2 = x_2, X_3 = x_3, X_4 = x_4)$. In your answers, feel free to do the same. For example, $p(x_1, x_3) = P(X_1 = x_1, X_3 = x_3)$. For the following cases, decompose into four terms, with each being as simple as possible.

1. If there is no assumption of independence, what is $p(x_1, x_2, x_3, x_4)$?

2. If all variables are assumed independent, what is $p(x_1, x_2, x_3, x_4)$?

3. Assuming the variables follow the Bayesian network structure below, what is $p(x_1, x_2, x_3, x_4)$?
1. **Sum of I.I.D Random Variables**

What is the distribution (with name and parameter(s)) of the average of n i.i.d. random variables, $X_1, ..., X_n$, each with mean μ and variance σ^2?

Answer.

According to the central limit theorem, this can be modeled as $N(\mu, \sigma^2/n)$.

1.4 **Sample and Population Mean**

Computing the sample mean is similar to the population mean: sum all available points and divide by the number of points. However, sample variance is slightly different from population variance.

1. Consider the equation for population variance, and an analogous equation for sample variance.

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \quad \text{(1)}$$

$$S_{biased}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \quad \text{(2)}$$

S_{biased}^2 is a random variable which estimates the constant σ^2. Is $E[S_{biased}^2]$ greater or less than σ^2?
2. Write the equation for $S^2_{unbiased}$ (known simply as S^2 in the slides). This is known as Bessel’s correction.

Answer.

1. $E[S^2_{biased}] < \sigma^2$. The intuition is that the spread of a sample of points is generally smaller than the spread of all the points considered together.

2. $S^2_{unbiased} = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$

2 Problems

2.1 Fish Sticks (courtesy of Lisa Yan)

Fish Sticks, the online platform designed to meet all of your fish stick needs, wants to model their hourly homepage traffic from Stanford. The company decides to model two different behaviors for homepage visits according to the Bayesian Network on the right:

![Bayesian Network Diagram]

A and B are the numbers of Stanford students and faculty, respectively, who visit the Fish Sticks homepage in an hour. Since Fish Sticks does not know when Stanford people eat, the company models demand as a "hidden" Bernoulli random variable D, which determines the distribution of A and B. Recall that in a Bayesian Network, random variables are conditionally independent given their parents. For example, given $D = 0$, $A \sim \text{Poi}(5)$ and $B \sim \text{Poi}(3)$, two independent random variables.

a. Given that 6 users from group A visit the homepage in the next hour, what is the probability that $D = 0$?

b. What is the probability that in the next hour, the total number of users who visit the homepage from groups A and B is equal to 12, i.e., what is $P(A + B = 12)$?

c. Now simulate $P(A + B = \text{total})$, where $\text{total} = 12$, by implementing the `infer_prob_total(total, ntrials)` function below using rejection sampling.

```python
• total is the total number of users from groups $A$ and $B$ in the event $A + B = \text{total}$.
• ntrials is the number of observations to generate for rejection sampling.
• prob is the return value to the function, where $\text{prob} \approx P(A + B = \text{total})$.
• The function call is implemented for you at the bottom of the code block.
```

You can call the following functions from the scipy package:
• `stats.bernoulli.rvs(p)`, which randomly generates a 1 with probability p, and generates a 0 otherwise.

• `stats.poisson.rvs(\lambda)`, which randomly generates a value according to a Poisson distribution with parameter λ

Answer.

a. Note that given $D = 0$, $A \sim \text{Poi}(\lambda = 5)$, and given $D = 1$, $A \sim \text{Poi}(\lambda = 8)$. By Bayes’ Theorem,

$$P(D = 0|A = 6) = \frac{P(A = 6|D = 0)P(D = 0)}{P(A = 6|D = 0)P(D = 0) + P(A = 6|D = 1)P(D = 1)}$$

$$= \frac{\frac{5^6 e^{-5}}{6!} (1 - 0.3)}{\frac{5^6 e^{-5}}{6!} (1 - 0.3) + \frac{8^6 e^{-8}}{6!} (0.3)}$$

$$= \frac{5^6 e^{-5}(1 - 0.3)}{5^6 e^{-5}(1 - 0.3) + 8^6 e^{-8}(0.3)} \approx 0.7364$$

b. By Law of Total Probability,

$$P(A + B = 12) = P(A + B = 12|D = 0)P(D = 0) + P(A + B = 12|D = 1)P(D = 1).$$

A and B are conditionally independent Poisson random variables given D, and therefore $A + B|D = 0 \sim \text{Poi}(\lambda = 8)$ and $A + B|D = 1 \sim \text{Poi}(\lambda = 14)$. Using the Poisson PMF,

$$P(A + B = 12) = \frac{8^{12} e^{-8}}{12!} \cdot (1 - 0.3) + \frac{14^{12} e^{-14}}{12!} \cdot (0.3) \approx 0.0632.$$

c. Here’s one idea:

```python
import numpy as np
from scipy import stats

def infer_prob_total(total, ntrials):
    n_samples_event = 0
    for i in range(ntrials):
        d = stats.bernoulli.rvs(0.3)
        user_sum = 0
        if d == 0:
            user_sum += stats.poisson.rvs(5) + stats.poisson.rvs(3)
        else:
            user_sum += stats.poisson.rvs(8) + stats.poisson.rvs(6)

        if user_sum == 12:
            n_samples_event += 1

    prob = n_samples_event/ntrials
    return prob
```
ntrials = 50000
total = 12
print("Simulated P(A or B) = ", infer_prob_total(total, ntrials))