
Chapter 7. Statistical Estimation

7.6: Properties of Estimators I
(From “Probability & Statistics with Applications to Computing” by Alex Tsun)

Now that we have all these techniques to compute estimators, you might be wondering which one is the
“best”. Actually, a better question would be: how can we determine which estimator is “better” (rather
than the technique)? There are even more different ways to estimate besides MLE/MoM/MAP, and in
different scenarios, different techniques may work better. In these notes, we will consider some properties of
estimators that allow us to compare their “goodness”.

7.6.1 Bias

The first estimator property we’ll cover is Bias. The bias of an estimator measures whether or not in
expectation, the estimator will be equal to the true parameter.

Definition 7.6.1: Bias

Let θ̂ be an estimator for θ. The bias of θ̂ as an estimator for θ is

Bias(θ̂, θ) = E
[
θ̂
]
− θ

If

• Bias(θ̂, θ) = 0, or equivalently E
[
θ̂
]

= θ, then we say θ̂ is an unbiased estimator of θ̂.

• Bias(θ̂, θ) > 0, then θ̂ typically overestimates θ.

• Bias(θ̂, θ) < 0, then θ̂ typically underestimates θ.

Let’s go through some examples!

Example(s)

First, recall that, if x1, ..., xn are iid realizations from Poi(θ), then the MLE and MoM were both the
sample mean.

θ̂ = θ̂MLE = θ̂MoM =
1

n

n∑
i=1

xi

Show that θ̂ is an unbiased estimator of θ.
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Solution

E
[
θ̂
]

= E

[
1

n

n∑
i=1

xi

]

=
1

n

n∑
i=1

E [xi] [LoE]

=
1

n

n∑
i=1

θ [E [Poi(θ)] = θ]

=
1

n
nθ

= θ

This makes sense: the average of your samples should be “on-target” for the true average!

Example(s)

First, recall that, if x1, ..., xn are iid realizations from (continuous) Unif(0, θ), then

θ̂MLE = xmax θ̂MoM = 2 · 1

n

n∑
i=1

xi

Sure, θ̂MLE maximizes the likelihood, so in a way θ̂MLE is better than θ̂MOM . But, what are the biases
of these estimators? Before doing any computation: do you think θ̂MLE and θ̂MoM are overestimates,
underestimates, or unbiased?

Solution I actually think θ̂MoM is spot-on since the average of the samples should be close to θ/2, and mul-

tiplying by 2 would seem to give the true θ. On the other hand, θ̂MLE might be a bit of an underestimate,
since we probably wouldn’t have θ be exactly the largest (maybe a little larger).

• Bias of the maximum likelihood estimator.

Recall from 5.10 that the density of the largest order statistic (i.e. the maximum of the sample) is

fXmax(y) = n Fn−1
X (y) fX(y) = n

(y
θ

)n−1 1

θ

You could also instead first find the CDF of Xmax as

FXmax
(y) = P (Xmax ≤ y) = P (Xi ≤ y)

n
= FX(y)n =

(y
θ

)n
since the max is less than or equal to a value if and only if each of them is, then take the derivative.
Using this density function we can compute the expected value of the ˆθMLE as follows:

E
[
θ̂MLE

]
= E [Xmax] =

∫ θ

0

y

(
n
(y
θ

)n−1 1

θ

)
dy =

n

θn

∫ θ

0

yndy =
n

θn

[
1

n+ 1
yn+1

]θ
0

=
n

n+ 1
θ

This makes sense because if I had 3 samples from Unif(0, 1) for example, I would expect them at

1/4, 2/4, 3/4, and so it would be
n

n+ 1
as my expected max. Similarly, if I had 4 samples, then I would

expect them at 1/5, 2/5, 3/5, 4/5, and so it would again be
n

n+ 1
as my expected max.
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Finally,

Bias(θ̂MLE , θ) = E
[
θ̂MLE

]
− θ =

n

n+ 1
θ − θ = − 1

n+ 1
θ

• Bias of the method of moments estimator.

E
[
θ̂MOM

]
= E

[
2 · 1

n

n∑
i=1

xi

]
=

2

n

n∑
i=1

E [xi] =
2

n
n
θ

2
= θ

Bias(θ̂MoM , θ) = E
[
θ̂MoM

]
− θ = θ − θ = 0

• Analysis of Results

This means that θ̂MLE typically underestimates θ and θ̂MOM is an unbiased estimator of θ. But some-
thing isn’t quite right...

Suppose the samples are x1 = 1, x2 = 9, x3 = 2. Then, we would have

θ̂MLE = max{1, 9, 2} = 9 θ̂MOM =
2

3
(1 + 9 + 2) = 8

However, based on our sample, the MoM estimator is impossible. If the actual parameter were 8, then
that means that the distribution we pulled the sample from is Unif(0, 8), in which case the likelihood

that we get a 9 is 0. But we did see a 9 in our sample. So, even though θ̂MOM is unbiased, it still
yields an impossible estimate. This just goes to show that finding the right estimator is actually quite
tricky.

A good solution would be to “de-bias” the MLE by scaling it appropriately. If you decided to have a
new estimator based on the MLE:

θ̂ =
n+ 1

n
θ̂MLE

you would now get an unbiased estimator that can’t be wrong! But now it does not maximize the
likelihood anymore...
Actually, the MLE is what we say to be “asymptotically unbiased”, meaning unbiased in the limit.
This is because

Bias(θ̂MLE , θ) = − 1

n+ 1
θ → 0

as n→∞. So usually we might just leave it because we can’t seem to win...

Example(s)

Recall that if x1, . . . , xn ∼ Exp(θ) are iid, our MLE and MoM estimates were both the inverse sample
mean:

θ̂ = θ̂MLE = θ̂MoM =
1

x̄
=

n∑n
i=1 xi

What can you say about the bias of this estimator?

Solution
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E
[
θ̂
]

= E
[

n∑n
i=1 xi

]
≥ n∑n

i=1 E [xi]
[Jensen’s inequality]

=
n∑n
i=1

1
θ

[
E [Exp(θ)] =

1

θ

]
=

n

n 1
θ

= θ

The inequality comes from Jensen’s (section 6.3): since g(x1, . . . , xn) =
1∑n
i=1 xi

is convex (at least in the

positive octant when all xi ≥ 0), we have that E [g(x1, . . . , xn)] ≥ g(E [x1] ,E [x2] , . . . ,E [xn]). It is convex

for a reason similar to that
1

x
is a convex function. So E

[
θ̂
]
≥ θ systematically, and we typically have an

overestimate.

7.6.2 Variance and Mean Squared Error

We are often also interested in how much a estimator varies (we would like it to be unbiased and have small
variance to that it is more accurate). One metric that captures this property of estimators is an estimators
variance.

The variance of an estimator θ̂ is
Var

(
θ̂
)

= E
[
(θ̂ − E

[
θ̂
]
)2
]

This is just the definition of variance applied to the random variable θ̂ and isn’t actually a new definition.

But maybe instead of just computing the variance, we want a slightly different metric which instead measures
the squared difference from the actual estimator and not just its expectation:

E
[
(θ̂ − θ)2

]
We call this property the mean squared error (MSE), and it is related to both bias and variance! Look

closely at the difference: if θ̂ is unbiased, then E
[
θ̂
]

= θ and the MSE and variance are actually equal!

Definition 7.6.2: Mean Squared Error

The mean squared error of an estimator θ̂ of θ is

MSE(θ̂, θ) = E
[
(θ̂ − θ)2

]
If θ̂ is an unbiased estimator of θ (i.e. E

[
θ̂
]

= θ), then you can see that MSE(θ̂, θ) = Var
(
θ̂
)

. In

fact, in general MSE(θ̂, θ) = Var
(
θ̂
)

+ Bias(θ̂, θ)2.
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This leads to what is known as the “Bias-Variance Tradeoff” in machine learning and statistics. Usually, we
want to minimize MSE, and these two quantities are often inversely related. That is, decreasing one leads
to an increase in the other, and finding the balance will minimize the MSE. It’s hard to see why that might
be the case since we aren’t working with as complex of estimators (we’re just learning the basics!).

Proof of Alternate MSE Formula. We will prove that MSE(θ̂, θ) = Var
(
θ̂
)

+ Bias(θ̂, θ)2.

MSE(θ̂, θ) = E
[
(θ̂ − θ)2

]
[def of MSE])

= E
[(
θ̂ − E

[
θ̂
]

+ E
[
θ̂
]
− θ
)2]

[add and subtract E
[
θ̂
]
]

= E
[(
θ̂ − E

[
θ̂
])2]

+ 2E
[(
θ̂ − E

[
θ̂
])(

E
[
θ̂
]
− θ
)]

+ E
[(

E
[
θ̂
]
− θ
)2]

[(a+ b)2 = a2 + 2ab+ b2]

= Var
(
θ̂
)

+ 0 + E
[
Bias(θ̂, θ)2

]
[def of var, bias, E

[
θ̂ − E

[
θ̂
]]

= 0]

= Var
(
θ̂
)

+ Bias(θ̂, θ)2

It is highly desirable that the MSE of an estimator is low! We want a small difference between θ̂ and θ. Use

the formula above to compute MSE: Var
(
θ̂
)

is something we learned how to compute a long time ago, and

there are several examples of bias computations above.

Example(s)

First, recall that, if x1, ..., xn are iid realizations from Poi(θ), then the MLE and MoM were both the
sample mean.

θ̂ = θ̂MLE = θ̂MoM =
1

n

n∑
i=1

xi

Compute the MSE of θ̂ as an estimator of θ.

Solution To compute the MSE, let’s compute the bias and variance separately. Earlier, we showed that

Bias(θ̂, θ) = E
[
θ̂
]
− θ = θ − θ = 0

Now for the variance:

Var
(
θ̂
)

= Var

(
1

n

n∑
i=1

xi

)

=
1

n

n∑
i=1

Var (xi) [variance adds if independent]

=
1

n2

n∑
i=1

θ [Var (Poi(θ)) = θ]

=
1

n2
nθ

=
θ

n
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Finally, using both of those results:

MSE(θ̂, θ) = Var
(
θ̂
)

+ Bias(θ̂, θ)2 =
θ

n
+ 02 =

θ

n
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