# o7: Variance, Bernoulli, Binomial

Jerry Cain April 11, 2022

#### Table of Contents

- 2 Variance
- 9 Properties of Variance
- 16 Bernoulli RV
- 20 Binomial RV
- 31 Exercises

## Variance

#### Average temperatures

Stanford, CA  $E[high] = 68 \degree F$  $E[low] = 52 \degree F$ 

Washington, DC  $E[high] = 67^{\circ}F$  $E[low] = 51^{\circ}F$ 



#### Is *E*[*X*] enough?

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### Average temperatures



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

## Variance = "spread"

#### Consider the following three distributions (PMFs):



- Expectation: E[X] = 3 for all distributions
- But the shape and spread across distributions are very different!
- Variance, Var(X) : a formal quantification of spread

5

-97

#### Variance

The variance of a random variable X with mean  $E[X] = \mu$  is  $Var(X) = E[(X - \mu)^2]$ 

- Also written as:  $E[(X E[X])^2]$
- Note:  $Var(X) \ge 0$
- Other names: **2<sup>nd</sup> central moment**, or square of the standard deviation

Var(X)Units of 
$$X^2$$
def standard deviation $SD(X) = \sqrt{Var(X)}$ Units of X

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### Comparing variance

Stanford, CA  $E[high] = 68^{\circ}F$   $Var(X) = E[(X - E[X])^2]$  Variance of X

Washington, DC  $E[high] = 67^{\circ}F$ 



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



# Properties of Variance

#### Properties of variance

| Definition              | $Var(X) = E[(X - E[X])^2]$     | Units of $X^2$ |
|-------------------------|--------------------------------|----------------|
| <u>def</u> standard dev | iation $SD(X) = \sqrt{Var(X)}$ | Units of X     |

Property 1 Property 2  $Var(X) = E[X^{2}] - (E[X])^{2}$  $Var(aX + b) = a^{2}Var(X)$ 

Property 1 is often easier to manipulate than the original definition
Unlike expectation, variance is not linear

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### Properties of variance

| Definition       | Var(X) = E[ | $(X - E[X])^2]$        | Units of $X^2$ |
|------------------|-------------|------------------------|----------------|
| def standard dev | viation SI  | $O(X) = \sqrt{Var(X)}$ | Units of $X$   |

Property 1 $Var(X) = E[X^2] - (E[X])^2$ Property 2 $Var(aX + b) = a^2 Var(X)$ 

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

## Computing variance, a proof

$$Var(X) = E[(X - E[X])^2] Variance$$
$$= E[X^2] - (E[X])^2 of X$$

$$Var(X) = E[(X - E[X])^{2}] = E[(X - \mu)^{2}] \qquad \text{Let } E[X] = \mu$$

$$= \sum_{x} (x - \mu)^{2} p(x)$$

$$= \sum_{x} (x^{2} - 2\mu x + \mu^{2}) p(x)$$

$$= \sum_{x} x^{2} p(x) - 2\mu \sum_{x} x p(x) + \mu^{2} \sum_{x} p(x)$$
Everyone,
please
$$= E[X^{2}] - 2\mu E[X] + \mu^{2} \cdot 1$$
welcome the
second
$$= E[X^{2}] - 2\mu^{2} + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

$$= E[X^{2}] - (E[X])^{2}$$
Herran Schemm, and Jerry Celin, CS109, Spring 2022



#### Properties of variance

| Definition             | Var(X) = | $E\left[(X - E[X])^2\right]$ | Units of $X^2$ |
|------------------------|----------|------------------------------|----------------|
| <u>def</u> standard de | eviation | $SD(X) = \sqrt{Var(X)}$      | Units of $X$   |

Property 1  $Var(X) = E[X^2] - (E[X])^2$ Property 2  $Var(aX + b) = a^2 Var(X)$ 

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### Property 2: A proof

Property 2  $Var(aX + b) = a^2 Var(X)$ 



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

# Bernoulli RV

## Bernoulli Random Variable



Consider an experiment with two outcomes: "success" and "failure".

<u>def</u> A Bernoulli random variable *X* maps "success" to 1 and "failure" to 0. Other names: indicator random variable, Boolean random variable

|                        | PMF         | P(X=1) = p(1) = p       |
|------------------------|-------------|-------------------------|
| $X \sim \text{Ber}(p)$ |             | P(X = 0) = p(0) = 1 - p |
|                        | Expectation | E[X] = p                |
| ( Support: {0,1}       | Variance    | Var(X) = p(1-p)         |

#### **Examples:**

- Coin flip
- Random binary digit
- Whether Doris barks

Remember this nice property of expectation.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

## Defining Bernoulli RVs

 $\begin{array}{ll} X \sim \operatorname{Ber}(p) & p_X(1) = p \\ E[X] = p & p_X(0) = 1 - p \end{array}$ 



#### Run a program

- Crashes w.p. p
- Works w.p. 1 − p

Let X: 1 if crash

 $X \sim \text{Ber}(p)$ P(X = 1) = pP(X = 0) = 1 - p



Serve an ad.

- User clicks w.p. 0.2
- Ignores otherwise

Let *X*: 1 if clicked

 $X \sim \text{Ber}(\underline{0,2})$   $P(X = 1) = \underline{0,2}$   $P(X = 0) = \underline{0,8}$ 

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



Roll two dice.

- Success: roll two 6's
- Failure: anything else
- Let *X* : 1 if success



## Defining Bernoulli RVs

 $\begin{array}{ll} X \sim \operatorname{Ber}(p) & p_X(1) = p \\ E[X] = p & p_X(0) = 1 - p \end{array}$ 



#### Run a program

- Crashes w.p. p
- Works w.p. 1 − p

Let *X*: 1 if crash

 $X \sim \text{Ber}(p)$ P(X = 1) = pP(X = 0) = 1 - p



Serve an ad.

- User clicks w.p. 0.2
- Ignores otherwise

Let *X*: 1 if clicked

 $X \sim Ber(\_)$  $P(X = 1) = \_$  $P(X = 0) = \_$ 

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

**()** 

Roll two dice.

- Success: roll two 6's
- Failure: anything else
- Let *X* : 1 if success

 $X \sim \text{Ber}(\_)$ 

 $E[X] = \_$ 

Stanford University 19

## Binomial RV

### Binomial Random Variable

$$E[X] = \sum_{k=0}^{\infty} k \cdot \binom{n}{k} p^{k} (1-p)^{n-k}$$

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A Binomial random variable X is the number of successes in n trials.



. (assuming disks crash independently)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



The parameters of a Binomial random variable:

- *n*: number of independent trials
- p: probability of success on each trial

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

**Reiterating notation** 

 $X \sim \operatorname{Bin}(n,p)$ 

If X is a binomial with parameters n and p, the PMF of X is

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Probability that X takes on the value k

Probability Mass Function for a Binomial

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

## Three coin flips

$$X \sim \operatorname{Bin}(n,p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Three fair (with p = 0.5) coins are flipped.

- X is number of heads
- X~Bin(3, 0.5)

Compute the following event probabilities:

```
P(X = 0)
P(X = 1)
P(X = 2)
P(X = 3)
P(X = 7)
P(event)
```

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



#### Three coin flips

$$X \sim \operatorname{Bin}(n,p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Three fair (with p = 0.5) coins are flipped.

- X is number of heads
- X~Bin(3,0.5)

Compute the following event probabilities:

| P(X=0)   | = p(0)                    | $= \binom{3}{0} p^0 (1-p)^3 = \frac{1}{8}$       |
|----------|---------------------------|--------------------------------------------------|
| P(X=1)   | = p(1)                    | $= \binom{3}{1} p^1 (1-p)^2 = \frac{3}{8}$       |
| P(X=2)   | = <i>p</i> (2)            | $= \binom{3}{2} p^2 (1-p)^1 = \frac{3}{8}$       |
| P(X=3)   | = p(3)                    | $= \binom{3}{3} p^3 (1-p)^0 = \frac{1}{8}$       |
| P(X=7)   | = p(7)                    | = 0                                              |
| P(event) | PLISA Fan, Chris Piech, M | ehran Sahami, and Jerry Cain, CS109, Spring 2022 |

Extra math note: By Binomial Theorem, we can prove  $\sum_{k=0}^{n} P(X = k) = 1$ 

## Binomial Random Variable

Consider an experiment n independent trials  $\partial f(Ber(p) \text{ random variables})$ <u>def</u> A **Binomial** random variable X is the number of successes in n trials.

|                    | PMF         | k = 0, 1,, n:                                      |
|--------------------|-------------|----------------------------------------------------|
| $X \sim Bin(n, p)$ |             | $P(X = k) = p(k) = {\binom{n}{k}} p^k (1-p)^{n-k}$ |
|                    | Expectation | E[X] = np                                          |
| Range: {0,1,, n}   | Variance    | Var(X) = np(1-p)                                   |

Examples:

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

## Binomial RV is sum of Bernoulli RVs





#### Bernoulli

• *X*~Ber(*p*)

#### Binomial

- *Y*~Bin(*n*, *p*)
- The sum of n independent Bernoulli RVs

 $Y = \sum_{i=1}^{n} X_i, \qquad X_i \sim \text{Ber}(p)$ 

Ber(p) = Bin(1, p)

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

## **Binomial Random Variable**

Consider an experiment: n independent trials of Ber(p) random variables. def A Binomial random variable X is the number of successes in n trials.



**Examples:** 

- # heads in n coin flips
- # of 1's in randomly generated length n bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

### Binomial Random Variable

Consider an experiment: n independent trials of Ber(p) random variables. <u>def</u> A Binomial random variable X is the number of successes in n trials.



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### No, give me the variance proof right now

To simplify the algebra a bit, let q = 1 - p, so p + q = 1.

So:  $E(X^{2}) = \sum_{k \ge 0}^{n} k^{2} {\binom{n}{k}} p^{k} q^{n-k}$   $= \sum_{k=0}^{n} kn {\binom{n-1}{k-1}} p^{k} q^{n-k}$   $= np \sum_{k=1}^{n} k {\binom{n-1}{k-1}} p^{k-1} q^{(n-1)-(k-1)}$   $= np \sum_{j=0}^{m} (j+1) {\binom{m}{j}} p^{j} q^{m-j}$   $= np {\left(\sum_{j=0}^{m} j\binom{m}{j} p^{j} q^{m-j} + \sum_{j=0}^{m} {\binom{m}{j}} p^{j} q^{m-j}\right)}$   $= np {\left(\sum_{j=0}^{m} m\binom{m-1}{j-1} p^{j} q^{m-j} + \sum_{j=0}^{m} {\binom{m}{j}} p^{j} q^{m-j}\right)}$   $= np {\left((n-1)p \sum_{j=1}^{m} {\binom{m-1}{j-1}} p^{j-1} q^{(m-1)-(j-1)} + \sum_{j=0}^{m} {\binom{m}{j}} p^{j} q^{m-j}\right)}$   $= np {((n-1)p(p+q)^{m-1} + (p+q)^{m})}$  = np((n-1)p+1)  $= n^{2} p^{2} + np(1-p)$ 

Definition of Binomial Distribution: p + q = 1Factors of Binomial Coefficient:  $k \binom{n}{k} = n \binom{n-1}{k-1}$ Change of limit: term is zero when k - 1 = 0putting j = k - 1, m = n - 1splitting sum up into two Factors of Binomial Coefficient:  $j \binom{m}{j} = m \binom{m-1}{j-1}$ Change of limit: term is zero when j - 1 = 0

**Binomial Theorem** 

as p + q = 1

by algebra

Then:

So:

$$\operatorname{var}(X) = \operatorname{E}(X^{2}) - (\operatorname{E}(X))^{2}$$
$$= np(1-p) + n^{2}p^{2} - (np)^{2}$$
Expectation of Binomial Distribution: E(X) = np

$$= np(1-p)$$

as required.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### proofwiki.org Stanford University 30

## Exercises



### Statistics: Expectation and variance

- 1. a. Let X = the outcome of a fair 4-sided die roll. What is E[X]?
  - b. Let Y = the sum of three rolls of a fair 4-sided die. What is E[Y]?
- 2. Let Z = # of *tails* on 10 flips of a biased coin (w.p. 0.4 of heads). What is E[Z]?
- 3. Compare the variances of  $B_1 \sim \text{Ber}(0.1)$  and  $B_2 \sim \text{Ber}(0.5)$ .

If you can identify common RVs, just look up statistics instead of re-deriving from definitions.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### Visualizing Binomial PMFs





#### Visualizing Binomial PMFs





Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



#### http://web.stanford.edu/class/cs109/ demos/galton.html

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



 $X \sim \operatorname{Bin}(n,p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$ 

When a marble hits a pin, it has an equal chance of going left or right. Let B = the <u>bucket index</u> a ball drops into. What is the <u>distribution</u> of B?

> (Interpret: If *B* is a common random variable, report it, otherwise report PMF)





$$X \sim \operatorname{Bin}(n,p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

When a marble hits a pin, it has an equal  $L_{\circ} \sim Bax(ps)$  chance of going left or right. Let B = the bucket index a ball drops into. What is the **distribution** of B?

- Each pin is an independent trial
- One decision made for level i = 1, 2, ..., 5
- Consider a Bernoulli RV with success R<sub>i</sub> if ball went right on level i
- Bucket index B = # times ball went right

$$B \sim Bin(n = 5, p = 0.5)$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022



$$X \sim \operatorname{Bin}(n,p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

When a marble hits a pin, it has an equal chance of going left or right. Let B = the bucket index a ball drops into. B is distributed as a Binomial RV,  $B \sim Bin(n = 5, p = 0.5)$ 

Calculate the probability of a ball landing in bucket k.

$$P(B = 0) = {\binom{5}{0}} 0.5^5 \approx 0.03$$
$$P(B = 1) = {\binom{5}{1}} 0.5^5 \approx 0.16$$
$$P(B = 2) = {\binom{5}{2}} 0.5^5 \approx 0.31$$
For Binomial RV!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

## Genetics and NBA Finals

$$X \sim \operatorname{Bin}(n,p) \quad p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- 1. Each parent has 2 genes per trait (e.g., eye color).
- Child inherits 1 gene from each parent with equal likelihood.
- Brown eyes are "dominant", blue eyes are "recessive":
  - Child has brown eyes if either or both genes for brown eyes are inherited.
  - Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.
- Two parents have 4 children. What is P(exactly 3 children have brown eyes)?
- Let's speculate that the Utah Jazz will play the Golden State Warriors in a 7-game series during the 2022 NBA finals.
  - The Jazz have a probability of 58% of winning each game, independently.
  - A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Utah Jazz winning)?



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

### Genetic inheritance

- 1. Each parent has 2 genes per trait (e.g., eye color).
- Child inherits 1 gene from each parent with equal likelihood.
- Brown eyes are "dominant", blue eyes are "recessive":
  - Child has brown eyes if either or both genes for brown eyes are inherited.
  - Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

**Big Q:** Fixed parameter or random variable?**Parameters**What is common among all outcomes  
of our experiment?
$$h=4$$
 $P_{R}=0.75$ **Random variable**What differentiates our event from  
the rest of the sample space?  $\times \approx < 0.1$  $2.3.43$ 

#### Genetic inheritance

- Each parent has 2 genes per trait (e.g., eye color).
- Child inherits 1 gene from each parent with equal likelihood.
- Brown eyes are "dominant", blue eyes are "recessive": •
  - Child has brown eyes if either or both genes for brown eyes are inherited.
  - Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
- Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

probabilities

191

p = 0.75

125

Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

1. Define events/ 2. Identify known RVs & state goal

*X*: **#** brown-eyed children,  $X \sim Bin(4, p) \int p^{= 0.75}$ *p*: *P*(brown–eyed child)

Want: P(X = 3)



Stanford University 42

(25 rd) <sup>2</sup> (27 rd)

LRRR



3. Solve

 $P(x=3) = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ 

RRRL RLRR

RRLR

### NBA Finals

Let's speculate: the Utah Jazz will play the Golden State Warriors in a 7-game series during the 2022 NBA finals.

- The Jazz have a probability of 58% of winning each game, independently.  $P = P \ll P$
- A team wins the series if they win at least 4 games (we play all 7 games).



Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

#### **NBA** Finals

# Let's speculate: the Utah Jazz will play the Golden State Warriors in a 7-game series during the 2022 NBA finals. The Jazz have a probability of 58% of <a href="https://www.fill.com">wwww.fill.com</a>

- The Jazz have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

#### What is P(Utah Jazz winning)?

- 1. Define events/ 2. Solve RVs & state goal
- X: # games Utah Jazz win  $X \sim Bin(7, 0.58)$

Want:  $P(X \ge 4)$ 

$$P(X \ge 4) = \sum_{k=4}^{7} P(X = k) = \sum_{k=4}^{7} {\binom{7}{k}} 0.58^{k} (0.42)^{7-k}$$

WWLWW (??)

NLWNW [??]

Cool Algebra/Probability Fact: this is identical to the probability of winning if we define winning = first to win 4 games

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022