Joint (Multivariate) Distributions

Table of Contents

2 Normal Approximation
12 Discrete Joint RVs
25 Multinomial RVs
35 Statistics of Two RVs
Normal Approximation
Normal RVs

\[X \sim \mathcal{N}(\mu, \sigma^2) \]

- Used to model many real-life situations because it maximizes entropy (i.e., randomness) for a given mean and variance
- Also useful for approximating the Binomial random variable!
Website testing

- 100 people are presented with a new website design.
- \(X = \# \) people whose time on site increases
- PM assumes design has no effect, so assume \(P(\text{stickier}) = 0.5 \) independently.
- CEO will endorse the new design if \(X \geq 65 \).

What is \(P(\text{CEO endorses change}) \)? Give a numerical approximation.

Approach 1: Binomial

Define

\[X \sim \text{Bin}(n = 100, p = 0.5) \]

Want: \(P(X \geq 65) \)

Solve

\[
P(X \geq 65) = \sum_{i=65}^{100} \binom{100}{i} 0.5^i (1 - 0.5)^{100-i} \approx 0.0018
\]
Don’t worry, Normal approximates Binomial

Galton Board

(We’ll explain why in 2 weeks)
Website testing

- 100 people are given a new website design.
- $X = \#$ people whose time on site increases
- The design actually has no effect, so $P($time on site increases$) = 0.5$ independently.
- CEO will endorse the new design if $X \geq 65$.

What is $P($CEO endorses change$)$? Give a numerical approximation.

Approach 1: Binomial

Define

$X \sim \text{Bin}(n = 100, p = 0.5)$

Want: $P(X \geq 65)$

Solve

$P(X \geq 65) \approx 0.0018$

⚠️ ⚠️ (this approach is missing something important)

Approach 2: approximate with Normal

Define

$Y \sim \mathcal{N}(\mu, \sigma^2)$

$\mu = np = 50$

$\sigma^2 = np(1 - p) = 25$

$\sigma = \sqrt{25} = 5$

Solve

$P(X \geq 65) \approx P(Y \geq 65) = 1 - F_Y(65)$

$= 1 - \Phi\left(\frac{65 - 50}{5}\right) = 1 - \Phi(3) \approx 0.0013$
Website testing (with continuity correction)

In our website testing, $Y \sim \mathcal{N}(50, 25)$ approximates $X \sim \text{Bin}(100, 0.5)$.

$$P(X = 65) \approx P(Y = 65)$$

$$\implies P(64.5 \leq Y \leq 65.5)$$

Approach 2

You must perform a **continuity correction** when approximating a Binomial RV with a Normal RV.

$$P(X \geq 65) \quad \text{Binomial}$$

$$\approx P(Y \geq 64.5) \quad \text{Normal}$$

$$\approx 0.0018 \quad \checkmark \quad \text{the better}$$

Stanford University
Continuity correction

If $Y \sim \mathcal{N}(np, np(1 - p))$ approximates $X \sim \text{Bin}(n, p)$, how do we approximate the following probabilities?

<table>
<thead>
<tr>
<th>Discrete (e.g., Binomial) probability question</th>
<th>Continuous (Normal) probability question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X \geq 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X > 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X < 6)$</td>
<td></td>
</tr>
<tr>
<td>$P(X \leq 6)$</td>
<td></td>
</tr>
</tbody>
</table>
Continuity correction

If $Y \sim \mathcal{N}(np, np(1 - p))$ approximates $X \sim \text{Bin}(n, p)$, how do we approximate the following probabilities?

<table>
<thead>
<tr>
<th>Discrete (e.g., Binomial) probability question</th>
<th>Continuous (Normal) probability question</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 6)$</td>
<td>$P(5.5 \leq Y \leq 6.5)$</td>
</tr>
<tr>
<td>$P(X \geq 6)$</td>
<td>$P(Y \geq 5.5)$</td>
</tr>
<tr>
<td>$P(X > 6)$</td>
<td>$P(Y \geq 6.5)$</td>
</tr>
<tr>
<td>$P(X < 6)$</td>
<td>$P(Y \leq 5.5)$</td>
</tr>
<tr>
<td>$P(X \leq 6)$</td>
<td>$P(Y \leq 6.5)$</td>
</tr>
</tbody>
</table>
Who gets to approximate?

\[X \sim \text{Bin}(n, p) \]

\[E[X] = np \]

\[\text{Var}(X) = np(1 - p) \]

\[Y \sim \text{Poi}(\lambda) \]

\[\lambda = np \]

\[Y \sim \mathcal{N}(\mu, \sigma^2) \]

\[\mu = np \]

\[\sigma^2 = np(1 - p) \]
Who gets to approximate?

1. If there is a choice, use Normal to approximate.
2. When using Normal to approximate a discrete RV, use a continuity correction.

Poisson approximation
- \(n \) large (> 20), \(p \) small (< 0.05)
- Slight dependence okay

Normal approximation
- \(n \) large (> 20), \(p \) mid-ranged (\(np(1-p) > 10 \))
- Independence
Stanford Admissions (a while back)

Stanford accepts 2480 students.
- Each admitted student matriculates w.p. 0.68 (independent trials)
- Let $X =$ # of students who will attend

What is $P(X > 1745)$? Give a numerical approximation.

Strategy:
A. Just Binomial
B. Poisson
C. Normal
D. None/other
Stanford Admissions (a while back)

Stanford accepts 2480 students.

- Each admitted student matriculates w.p. 0.68 (independent trials)
- Let $X = \#$ of students who will attend

What is $P(X > 1745)$? Give a numerical approximation.

Strategy:

A. Just Binomial
 - computationally expensive (also not an approximation)
B. Poisson
 - $p = 0.68$, not small enough
C. Normal ✅
 - Variance $np(1 - p) = 540 > 10$
D. None/other

Define an approximation

Let $Y \sim \mathcal{N}(E[X], \text{Var}(X))$

\[
E[X] = np = 1686
\]

\[
\text{Var}(X) = np(1 - p) \approx 540 \Rightarrow \sigma = 23.3
\]

Solve

\[
P(X > 1745) \approx P(Y \geq 1745.5)
\]

\[
P(Y \geq 1745.5) = 1 - F(1745.5)
\]

\[
= 1 - \Phi\left(\frac{1745.5 - 1686}{23.3}\right)
\]

\[
= 1 - \Phi(2.54) \approx 0.0055
\]
Discrete Joint RVs
From last slide deck

What is the probability that the Warriors win? How do you model zero-sum games?

\[P(A_W > A_B) \]

This is a probability of an event involving two random variables!
Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

X

random variable

$P(X = 1)$

probability of an event

$P(X = k)$

probability mass function
Joint probability mass functions

Roll two 6-sided dice, yielding values X and Y.

<table>
<thead>
<tr>
<th>X</th>
<th>$P(X = 1)$</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variable</td>
<td>probability of an event</td>
<td>probability mass function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X, Y</th>
<th>$P(X = 1 \cap Y = 6)$</th>
<th>$P(X = 1, Y = 6)$</th>
<th>$P(X = a, Y = b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>random variables</td>
<td>new notation: the comma</td>
<td>probability of the intersection of two events</td>
<td>joint probability mass function</td>
</tr>
</tbody>
</table>
Discrete joint distributions

For two discrete joint random variables X and Y, the joint probability mass function is defined as:

$$p_{X,Y}(a, b) = P(X = a, Y = b)$$

The marginal distributions of the joint PMF are defined as:

$$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a, y)$$

$$p_Y(b) = P(Y = b) = \sum_x p_{X,Y}(x, b)$$

Use marginal distributions to get a 1-D RV from a joint PMF.
Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y?

$p_{X,Y}(a, b) = \frac{1}{36}$

$(a, b) \in \{(1,1), \ldots, (6,6)\}$

Probability table

- All possible outcomes for several discrete RVs
- Not parametric (e.g., parameter p in $\text{Ber}(p)$)
Two dice

Roll two 6-sided dice, yielding values X and Y.

1. What is the joint PMF of X and Y?

 $$p_{X,Y}(a, b) = 1/36 \quad (a, b) \in \{(1,1), \ldots, (6,6)\}$$

2. What is the marginal PMF of X?

 $$p_X(a) = P(X = a) = \sum_y p_{X,Y}(a, y) = \sum_{y=1}^{6} \frac{1}{36} = \frac{1}{6} \quad a \in \{1, \ldots, 6\}$$
A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is $P(X = 1, Y = 0)$, the missing entry in the probability table?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>?</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

1. What is $P(X = 1, Y = 0)$, the missing entry in the probability table?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.16</td>
<td>0.12</td>
<td>0.07</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.14</td>
<td>0.12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

A joint PMF must sum to 1:

$$\sum_{x} \sum_{y} p_{X,Y}(x, y) = 1$$
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of X?
A computer (or three) in every house.

Consider households in Silicon Valley.

- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

2. How do you compute the marginal PMF of X?

<table>
<thead>
<tr>
<th>Y (# PCs)</th>
<th>X (# Macs)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.16</td>
<td>.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.12</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.12</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.04</td>
<td>.19</td>
<td></td>
</tr>
</tbody>
</table>

- **A.** $p_{X,Y}(x, 0) = P(X = x, Y = 0)$
- **B.** Marginal PMF of X $p_x(x) = \sum_y p_{x,y}(x, y)$
- **C.** Marginal PMF of Y $p_y(y) = \sum_x p_{x,y}(x, y)$

To find a marginal distribution over one variable, sum over all other variables in the joint PMF.
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let $C = X + Y$. What is $P(C = 3)$?

<table>
<thead>
<tr>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (# PCs)</td>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>.07</td>
<td>.12</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>.04</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A computer (or three) in every house.

Consider households in Silicon Valley.
- A household has X Macs and Y PCs.
- Each house has a maximum of 3 computers (Macs + PCs) in the house.

3. Let $C = X + Y$. What is $P(C = 3)$?

<table>
<thead>
<tr>
<th>X (# Macs)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.16</td>
<td>.12</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>1</td>
<td>.12</td>
<td>.14</td>
<td>.12</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>.07</td>
<td>.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$$P(C = 3) = P(X + Y = 3) = \sum_{x} \sum_{y} P(X + Y = 3 | X = x, Y = y) P(X = x, Y = y)$$

$$= P(X = 0, Y = 3) + P(X = 1, Y = 2) + P(X = 2, Y = 1) + P(X = 3, Y = 0)$$

We’ll come back to sums of RVs next lecture!
Multinomial RV
Recall the good times

Permutations

$n!$

How many ways are there to order n objects?
Counting unordered objects

Binomial coefficient

How many ways are there to group n objects into two groups of size k and $n-k$, respectively?

\[
\binom{n}{k} = \frac{n!}{k! (n-k)!}
\]

Called the binomial coefficient because of something from Algebra

Multinomial coefficient

How many ways are there to group n objects into r groups of sizes n_1, n_2, \ldots, n_r, respectively?

\[
\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}
\]

Multinomials generalize Binomials for counting.
Probability

Binomial RV

What is the probability of getting \(k \) successes and \(n - k \) failures in \(n \) trials?

\[
P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

Binomial # of ways of ordering the successes
Probability of each ordering of \(k \) successes is equal + mutually exclusive

Multinomial RV

What is the probability of getting \(c_1 \) of outcome 1, \(c_2 \) of outcome 2, ..., and \(c_m \) of outcome \(m \) in \(n \) trials?

Multinomial RVs also generalize Binomial RVs for probability!
Multinomial Random Variable

Consider an experiment of n independent trials:
- Each trial results in one of m outcomes. $P(\text{outcome } i) = p_i$, $\sum_{i=1}^{m} p_i = 1$
- Let $X_i = $ # trials with outcome i

Joint PMF

$$P(X_1 = c_1, X_2 = c_2, ..., X_m = c_m) = \frac{n!}{c_1!c_2!...c_m!} p_1^{c_1}p_2^{c_2}...p_m^{c_m}$$

where $\sum_{i=1}^{m} c_i = n$ and $\sum_{i=1}^{m} p_i = 1$

- **Multinomial** # of ways of ordering the outcomes
- **Probability** of each ordering is equal + mutually exclusive
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.

What is the probability of getting:

• 1 one
• 1 two
• 0 threes
• 2 fours
• 0 fives
• 3 sixes
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times.
What is the probability of getting:

- 1 one
- 1 two
- 0 threes
- 2 fours
- 0 fives
- 3 sixes

\[P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \binom{7}{1,1,0,2,0,3} \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^1 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^2 \left(\frac{1}{6} \right)^0 \left(\frac{1}{6} \right)^3 = 420 \left(\frac{1}{6} \right)^7 \]
Hello dice rolls, my old friends

A 6-sided die is rolled 7 times. What is the probability of getting:

- 1 one
- 0 threes
- 1 two
- 2 fours
- 0 fives
- 3 sixes

\[
P(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 2, X_5 = 0, X_6 = 3) = \binom{7}{1,1,0,2,0,3} \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^1 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^2 \left(\frac{1}{6}\right)^0 \left(\frac{1}{6}\right)^3 = 420 \left(\frac{1}{6}\right)^7 \]

Choose where the sixes appear

Probability of rolling a six this many times
Statistics of Two RVs
Expectation and Covariance

In real life, we often have many RVs interacting at once.
• We’ve seen some simpler cases (e.g., sum of independent Bernoullis).
• Come Friday, we’ll discuss sums of Binomials, sums of Poissons, etc.
• Computing joint PMFs in general is hard!
• Fortunately, you don’t need to model joint RVs completely all the time.

Instead, we’ll focus next on reporting statistics of multiple RVs:
• **Expectation of sums** (you’ve seen some of this, more on Friday)
• **Covariance**: measure of how two RVs vary with each other (more on this next week)
Properties of Expectation, extended to two RVs

1. Linearity:
 \[E[aX + bY + c] = aE[X] + bE[Y] + c \]

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]
 (we’ve seen this; we’ll prove today!)

3. Unconscious statistician:
 \[E[g(X, Y)] = \sum_x \sum_y g(x, y)p_{X,Y}(x, y) \]
 True for both independent and dependent random variables!
Proof of expectation of a sum of RVs

\[E[X + Y] = \sum_x \sum_y (x + y)p_{X,Y}(x, y) \]

\[= \sum_x \sum_y xp_{X,Y}(x, y) + \sum_x \sum_y yp_{X,Y}(x, y) \]

\[= \sum_x x \sum_y p_{X,Y}(x, y) + \sum_y y \sum_x p_{X,Y}(x, y) \]

\[= \sum_x xp_X(x) + \sum_y yp_Y(y) \]

\[= E[X] + E[Y] \]

\[E[X + Y] = E[X] + E[Y] \]

LOTUS,
\[g(X,Y) = X + Y \]

Linearity of summations
(cont. case: linearity of integrals)

Marginal PMFs for \(X \) and \(Y \)
Expectations of common RVs: Binomial

\[X \sim \text{Bin}(n, p) \quad E[X] = np \]

of successes in \(n \) independent trials with probability of success \(p \)

Recall: \(\text{Bin}(1, p) = \text{Ber}(p) \)

\[
X = \sum_{i=1}^{n} X_i
\]

Let \(X_i = \text{ith trial is heads} \)

\[X_i \sim \text{Ber}(p), \quad E[X_i] = p \]

\[
E[X] = E \left[\sum_{i=1}^{n} X_i \right] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np
\]