14: Conditional Expectation

Jerry Cain
April 27, 2022
Discrete conditional distributions
Discrete conditional distributions

Recall the definition of the conditional probability of event E given event F:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

For discrete random variables X and Y, the **conditional PMF** of X given Y is

$$P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Different notation, same idea:

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$
Discrete probabilities of CS109

Each student responds with:

Year Y:
- 1: Frosh/Soph
- 2: Jr/Sr
- 3: Coterm/grad/SCPD

Timezone T (12pm California time in my timezone is):
- -1: AM
- 0: noon
- 1: PM

<table>
<thead>
<tr>
<th>Year Y</th>
<th>$T = -1$</th>
<th>$T = 0$</th>
<th>$T = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 1$</td>
<td>.06</td>
<td>.29</td>
<td>.30</td>
</tr>
<tr>
<td>$Y = 2$</td>
<td>.01</td>
<td>.14</td>
<td>.08</td>
</tr>
<tr>
<td>$Y = 3$</td>
<td>.01</td>
<td>.09</td>
<td>.02</td>
</tr>
</tbody>
</table>

$P(Y = 3, T = 1)$

Joint PMFs sum to 1.
Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs
(A) $P(Y = y|T = t)$ and (B) $P(T = t|Y = y)$.

1. Which is which?
2. What's the missing probability?

Joint PMF

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

Conditional PMFs

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 2$</th>
<th>$Y = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = -1$</td>
<td>.75</td>
<td>.125</td>
<td>$?$</td>
</tr>
<tr>
<td>$T = 0$</td>
<td>.56</td>
<td>.27</td>
<td>.17</td>
</tr>
<tr>
<td>$T = 1$</td>
<td>.75</td>
<td>.2</td>
<td>.05</td>
</tr>
</tbody>
</table>
Discrete probabilities of CS109

The below are **conditional probability tables** for conditional PMFs

(A) \(P(Y = y|T = t) \) and (B) \(P(T = t|Y = y) \).

1. Which is which?

2. What’s the missing probability?

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = -1)</td>
<td>.06</td>
<td>.01</td>
<td>.01</td>
</tr>
<tr>
<td>(T = 0)</td>
<td>.29</td>
<td>.14</td>
<td>.09</td>
</tr>
<tr>
<td>(T = 1)</td>
<td>.30</td>
<td>.08</td>
<td>.02</td>
</tr>
</tbody>
</table>

Conditional PMFs also sum to 1 conditioned on different events!

(B) \(P(T = t|Y = y) \)

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = -1)</td>
<td>.09</td>
<td>.04</td>
<td>.08</td>
</tr>
<tr>
<td>(T = 0)</td>
<td>.45</td>
<td>.61</td>
<td>.75</td>
</tr>
<tr>
<td>(T = 1)</td>
<td>.46</td>
<td>.35</td>
<td>.17</td>
</tr>
</tbody>
</table>

(A) \(P(Y = y|T = t) \)

<table>
<thead>
<tr>
<th></th>
<th>(Y = 1)</th>
<th>(Y = 2)</th>
<th>(Y = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = -1)</td>
<td>.75</td>
<td>.125</td>
<td>.125</td>
</tr>
<tr>
<td>(T = 0)</td>
<td>.56</td>
<td>.27</td>
<td>.17</td>
</tr>
<tr>
<td>(T = 1)</td>
<td>.75</td>
<td>.2</td>
<td>.05</td>
</tr>
</tbody>
</table>

\[.30/(.06+.29+.30) \]
Quick check

Number or function?

1. $P(X = 2|Y = 5)$
2. $P(X = x|Y = 5)$
3. $P(X = 2|Y = y)$
4. $P(X = x|Y = y)$

True or false?

5. $\sum_x P(X = x|Y = 5) = 1$
6. $\sum_y P(X = 2|Y = y) = 1$
7. $\sum_x \sum_y P(X = x|Y = y) = 1$
8. $\sum_x \left(\sum_y P(X = x|Y = y)P(Y = y) \right) = 1$
Quick check

Number or function?

1. \(P(X = 2 | Y = 5) \)
 number

2. \(P(X = x | Y = 5) \)
 1-D function

3. \(P(X = 2 | Y = y) \)
 1-D function

4. \(P(X = x | Y = y) \)
 2-D function

True or false?

5. \(\sum_x P(X = x | Y = 5) = 1 \) true

6. \(\sum_y P(X = 2 | Y = y) = 1 \) false

7. \(\sum_x \sum_y P(X = x | Y = y) = 1 \) false

8. \(\sum_x \left(\sum_y P(X = x | Y = y)P(Y = y) \right) = 1 \) true

\[P(X = x | Y = y) = \frac{P(X = x,Y = y)}{P(Y = y)} \]
Conditional Expectation
Conditional expectation

Recall the conditional PMF of X given $Y = y$:

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p_{X,Y}(x, y)}{p_Y(y)}$$

The conditional expectation of X given $Y = y$ is

$$E[X|Y = y] = \sum_x xP(X = x|Y = y) = \sum_x xp_{X|Y}(x|y)$$
It’s been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1, roll 2 be D_2.
- Let $S = \text{value of } D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

$$E[S|D_2 = 6] = \sum_{x} xP(S = x|D_2 = 6)$$

$$= \left(\frac{1}{6}\right) (7 + 8 + 9 + 10 + 11 + 12)$$

$$= \frac{57}{6} = 9.5$$

Intuitively:

$$6 + E[D_1] = 6 + 3.5 = 9.5$$

Let’s prove this!
Properties of conditional expectation

1. LOTUS:

\[E[g(X)|Y = y] = \sum_x g(x)p_{X|Y}(x|y) \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i | Y = y \right] = \sum_{i=1}^{n} E[X_i | Y = y] \]

3. Law of total expectation (next time)
It’s been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1, roll 2 be D_2.
- Let $S = \text{value of } D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?

 $\frac{57}{6} = 9.5$

2. What is $E[S|D_2]$?

 A. A function of S
 B. A function of D_2
 C. A number

$E[X|Y = y] = \sum_x x p_x|y(x|y)$
It’s been so long, our dice friends

- Roll two 6-sided dice.
- Let roll 1 be D_1, roll 2 be D_2.
- Let $S =$ value of $D_1 + D_2$.

1. What is $E[S|D_2 = 6]$?
 - $\frac{57}{6} = 9.5$

2. What is $E[S|D_2]$?
 - A function of S
 - A function of D_2
 - A number

 $E[S|D_2 = d_2] = E[D_1 + d_2|D_2 = d_2]$

 $= \sum_{d_1} (d_1 + d_2)P(D_1 = d_1|D_2 = d_2)$

 $= \sum_{d_1} d_1 P(D_1 = d_1) + d_2 \sum_{d_1} P(D_1 = d_1)$

 $= E[D_1] + d_2 = 3.5 + d_2$

 $E[S|D_2] = 3.5 + D_2$
Law of Total Expectation
Properties of conditional expectation

1. LOTUS:

\[E[g(X) | Y = y] = \sum_x g(x) p_{X|Y}(x | y) \]

2. Linearity of conditional expectation:

\[E \left[\sum_{i=1}^{n} X_i | Y = y \right] = \sum_{i=1}^{n} E[X_i | Y = y] \]

3. Law of total expectation:

\[E[X] = E[E[X | Y]] \]

what?!
Proof of Law of Total Expectation

\[E[E[X|Y]] = E[g(Y)] = \sum_y P(Y = y)E[X|Y = y] \]

\[= \sum_y P(Y = y) \sum_x xP(X = x|Y = y) \]

\[= \sum_y \left(\sum_x xP(X = x|Y = y)P(Y = y) \right) = \sum_y \left(\sum_x xP(X = x, Y = y) \right) \]

\[= \sum_x \sum_y xP(X = x, Y = y) = \sum_x x \sum_y P(X = x, Y = y) \]

\[= \sum_x xP(X = x) \]

\[= E[X] \quad \text{...what?} \]
Another way to compute $E[X]$

$$E[E[X|Y]] = \sum_y P(Y = y)E[X|Y = y] = E[X]$$

If we only have a conditional PMF of X on some discrete variable Y, we can compute $E[X]$ as follows:

1. Compute expectation of X given some value of $Y = y$
2. Repeat step 1 for all values of Y
3. Compute a weighted sum (where weights are $P(Y = y)$)

```python
def recurse():
    if (random.random() < 0.5):
        return 3
    else: return (2 + recurse())
```

Useful for analyzing recursive code.
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of recurse()}$. What is $E[Y]$?

$E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

$E[Y|X = 1] = 3$

When $X = 1$, return 3.
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`.
What is $E[Y]$?

$E[Y|X = 1] = 3$

What is $E[Y|X = 2]$?

B. $E[5 + Y] = 5 + E[Y]$
C. $5 + E[Y|X = 2]$
Analyzing recursive code

```
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let Y = return value of `recurse()`.
What is $E[Y]$?

When $X = 2$, return $5 + a$ future return value of `recurse()`.

What is $E[Y|X = 2]$?

B. $E[5 + Y] = 5 + E[Y]$
C. $5 + E[Y|X = 2]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y =$ return value of `recurse()`. What is $E[Y]$?

If Y discrete

$$E[X] = E[E[X|Y]] = \sum_y E[X|Y = y]P(Y = y)$$

$E[Y|X = 1] = 3$
$E[Y|X = 2] = E[5 + Y]$
When $X = 3$, return $7 + a$ future return value of `recurse()`.

$E[Y|X = 3] = E[7 + Y]$
Analyzing recursive code

```python
def recurse():
    # equally likely values 1,2,3
    x = np.random.choice([1,2,3])
    if (x == 1): return 3
    elif (x == 2): return (5 + recurse())
    else: return (7 + recurse())
```

Let $Y = \text{return value of } \text{recurse()}.$ What is $E[Y]$?

$$E[Y] = \frac{3}{3} + (5 + E[Y])(\frac{1}{3}) + (7 + E[Y])(\frac{1}{3})$$

$$E[Y] = (1/3)(15 + 2E[Y]) = 5 + (2/3)E[Y]$$

$$E[Y] = 15$$

On your own: What is $\text{Var}(Y)$?
Independent RVs, defined another way

If X and Y are independent discrete random variables, then $\forall x, y$:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$

$$p_{X|Y}(x | y) = \frac{p_{X,Y}(x, y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Note for conditional expectation, independent X and Y implies

$$E[X|Y = y] = \sum_x x p_{X|Y}(x | y) = \sum_x x p_X(x) = E[X]$$
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- $X = \#$ of people per day who visit your site. $X \sim \text{Bin}(100, 0.5)$
- $Y_i = \#$ of minutes spent per day by visitor i. $Y_i \sim \text{Poi}(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is $E[W]$?

[indep X, Y
\[
E[X|Y = y] = E[X]
\]
Random number of random variables

Say you have a website: BestJokesEver.com. Let:

- $X = \#$ of people per day who visit your site. $X \sim \text{Bin}(100, 0.5)$
- $Y_i = \#$ of minutes spent by visitor i. $Y_i \sim \text{Poi}(8)$
- X and all Y_i are independent.

The time spent by all visitors per day is $W = \sum_{i=1}^{X} Y_i$. What is $E[W]$?

\[
E[W] = E\left[\sum_{i=1}^{X} Y_i\right] = E\left[E\left[\sum_{i=1}^{X} Y_i | X\right]\right]
\]

\[
= E[X E[Y_i]]
\]

\[
= E[Y_i] E[X] \quad \text{(scalar $E[Y_i]$)}
\]

\[
= 8 \cdot 50
\]
See you on Friday!

Have a super Wednesday!
Extra
Hiring software engineers

Your company has only one job opening for a software engineer.
• n candidates interview, in order ($n!$ orderings equally likely)
• Must decide hire/no hire *immediately* after each interview

Strategy:
1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes $P($get best candidate$)$?

Fun fact:
• There is an α-to-1 factor difference in productivity b/t the “best” and “average” software engineer.
• Steve jobs said $\alpha=25$, Mark Zuckerberg claims $\alpha=100$, some even claim $\alpha=300$
Hiring software engineers

Your company has only one job opening for a software engineer.

- *n* candidates interview, in order (*n!* orderings equally likely)
- Must decide hire/no hire *immediately* after each interview

Strategy:

1. Interview *k* (of *n*) candidates and reject all *k*
2. Accept the next candidate better than all of first *k* candidates.

What is your target *k* that maximizes P(get best candidate)?

Define:

- *X* = position of best engineer candidate (1, 2, ..., *n*)
- *B* = event that you hire the best engineer

Want to maximize for *k*:

\[P_k(B) = \text{probability of } B \text{ when using strategy for a given } k \]

\[P_k(B) = \sum_{i=1}^{n} P_k(B|X = i)P(X = i) = \frac{1}{n} \sum_{i=1}^{n} P_k(B|X = i) \]

(law of total probability)
Hiring software engineers

Your company has only one job opening for a software engineer.

Strategy:
1. Interview \(k \) (of \(n \)) candidates and reject all \(k \)
2. Accept the next candidate better than all of first \(k \) candidates.

What is your target \(k \) that maximizes \(P(\text{get best candidate}) \)?

Define:
- \(X \) = position of best engineer candidate
- \(B \) = event that you hire the best engineer

If \(i \leq k \):
\[
P_k(B|X = i) = 0 \quad \text{(we fired best candidate already)}
\]

Else:
- We must not hire prior to the \(i \)-th candidate.
- We must have fired the best of the \(i-1 \) first candidates.
- The best of the \(i-1 \) needs to be our comparison point for positions \(k+1, \ldots, i-1 \).
- The best of the \(i-1 \) needs to be one of our first \(k \) comparison/auto-fire

\[
P_k(B) = \frac{1}{n} \sum_{i=1}^{n} P_k(B|X = i) = \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i-1} \quad \Leftarrow \text{Want to maximize over } k
\]
Hiring software engineers

Your company has only one job opening for a software engineer.

Strategy: 1. Interview k (of n) candidates and reject all k
2. Accept the next candidate better than all of first k candidates.

What is your target k that maximizes P(get best candidate)?

Want to maximize over k:

$$P_k(B) = \frac{1}{n} \sum_{i=k+1}^{n} \frac{k}{i-1} \approx \frac{k}{n} \int_{i=k+1}^{n} \frac{1}{i-1} di = \frac{k}{n} \ln(i - 1)\Big|_{i=k+1}^{n} = \frac{k}{n} \ln \frac{n-1}{k} \approx \frac{k}{n} \ln \frac{n}{k}$$

Maximize by differentiating w.r.t k, set to 0, solve for k:

$$\frac{d}{dk} \left(\frac{k}{n} \ln \frac{n}{k} \right) = \frac{1}{n} \ln \frac{n}{k} + \frac{k}{n} \cdot \frac{-n}{k^2} = 0$$

$$\ln \frac{n}{k} = 1$$

1. Interview $\frac{n}{e}$ candidates
2. Pick best based on strategy
3. $P_k(B) \approx 1/e \approx 0.368$