15: General Inference

Jerry Cain
April 29, 2022
General Inference: Introduction
Inference
Inference

What are your symptoms?

Type your main symptom here

My Symptoms

- nausea
- fever 100.5f to 102f
- severe headache
- shaking chills

Results Strength: MODERATE
Inference

General inference question:

Given the values of some random variables, what is the conditional distribution of some other random variables?
Inference

One inference question:

\[P(F = 1|N = 1, T = 1) = \frac{P(F = 1, N = 1, T = 1)}{P(N = 1, T = 1)} \]
Another inference question:

\[
P(C_o = 1, U = 1 | S = 0, F_e = 0) \]

\[
= \frac{P(C_o = 1, U = 1, S = 0, F_e = 0)}{P(S = 0, F_e = 0)}
\]
Inference

If we know the full joint distribution, we can answer all probabilistic inference questions.

What is the size of the joint probability table?
A. 2^{N-1} entries
B. N^2 entries
C. 2^N entries
D. None/other/don’t know

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022
Inference

If we know the full joint distribution, we can answer all probabilistic inference questions.

What is the size of the joint probability table?

A. 2^{N-1} entries
B. N^2 entries
C. 2^N entries
D. None/other/don’t know

Brute-force computation of a full joint probability mass function is often intractable.
N can be large...
Conditionally Independent RVs

Recall that two events A and B are conditionally independent given E if:

$$P(AB|E) = P(A|E)P(B|E)$$

n discrete random variables $X_1, X_2, ..., X_n$ are called conditionally independent given Y if:

for all $x_1, x_2, ..., x_n, y$:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n|Y = y) = \prod_{i=1}^{n} P(X_i = x_i|Y = y)$$

This implies the following (cool to remember for later):

$$\log P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n|Y = y) = \sum_{i=1}^{n} \log P(X_i = x_i|Y = y)$$
Bayesian Networks
A simpler WebMD

Flu Under-grad

Fever Tired

Great! Just specify $2^4 = 16$ joint probabilities?

$P(F_{lu} = a, F_{ev} = b, U = c, T = d)$

What would an infectious diseases (ID) expert do?

Describe the joint distribution using causality!
Constructing a Bayesian Network

What would an ID expert do?

1. Describe the joint distribution using causality.

2. **Assume conditional independence.**
In a Bayesian Network, each random variable is conditionally independent of its non-descendants, given its parents.

- Node: random variable
- Directed edge: conditional dependency

Examples:
- \(P(F_{ev} = 1|T = 0, F_{lu} = 1) = P(F_{ev} = 1|F_{lu} = 1) \)
- \(P(F_{lu} = 1, U = 0) = P(F_{lu} = 1)P(U = 0) \)
Constructing a Bayesian Network

What would an ID expert do?

1. Describe the joint distribution using causality.

2. Assume conditional independence.

3. Provide $P(\text{values}|\text{parents})$ for each random variable

What conditional probabilities should our expert specify?

$P(F_{lu} = 1) = 0.1$
$P(U = 1) = 0.8$

- Flu
- Undergrad
- Fever
- Tired

$P(F_{ev} = 1|F_{lu} = 1) = 0.9$
$P(F_{ev} = 1|F_{lu} = 0) = 0.05$
Constructing a Bayesian Network

What would an ID expert do?

1. Describe the joint distribution using causality.
2. Assume conditional independence.
3. Provide $P(\text{values} | \text{parents})$ for each random variable

What conditional probabilities should our expert specify?

- $P(T = 1 | F_{lu} = 0, U = 0)$
- $P(T = 1 | F_{lu} = 0, U = 1)$
- $P(T = 1 | F_{lu} = 1, U = 0)$
- $P(T = 1 | F_{lu} = 1, U = 1)$

- $P(F_{eu} = 1 | F_{lu} = 1) = 0.9$
- $P(F_{eu} = 1 | F_{lu} = 0) = 0.05$

- $P(U = 1) = 0.8$

- $P(F_{lu} = 1) = 0.1$
What would a CS109 student do?

1. Populate a Bayesian network by asking an infectious diseases expert or by using reasonable assumptions

2. Answer inference questions

\[
P(F_{lu} = 1) = 0.1 \quad P(U = 1) = 0.8
\]

Using a Bayes Net

\[
P(F_{ev} = 1|F_{lu} = 1) = 0.9 \\
P(F_{ev} = 1|F_{lu} = 0) = 0.05
\]

\[
P(T = 1|F_{lu} = 0, U = 0) = 0.1 \\
P(T = 1|F_{lu} = 0, U = 1) = 0.8 \\
P(T = 1|F_{lu} = 1, U = 0) = 0.9 \\
P(T = 1|F_{lu} = 1, U = 1) = 1.0
\]
Inference: Math
Inference via math

\[P(F_{lu} = 1) = 0.1 \quad P(U = 1) = 0.8 \]

1. \[P(F_{lu} = 0, U = 1, F_{ev} = 0, T = 1) \]?

Compute joint probabilities using chain rule.

\[P(F_{ev} = 1|F_{lu} = 1) = 0.9 \quad P(T = 1|F_{lu} = 0, U = 0) = 0.1 \]
\[P(F_{ev} = 1|F_{lu} = 0) = 0.05 \quad P(T = 1|F_{lu} = 0, U = 1) = 0.8 \]
\[P(T = 1|F_{lu} = 1, U = 0) = 0.9 \quad P(T = 1|F_{lu} = 1, U = 1) = 1.0 \]
Inference via math

1. Compute joint probabilities
 \[P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1) \]
 \[P(F_{lu} = 0, F_{ev} = 0, U = 0, T = 1) \]

2. Definition of conditional probability
 \[\frac{P(F_{lu} = 1, F_{ev} = 0, U = 0, T = 1)}{\sum_x P(F_{lu} = x, F_{ev} = 0, U = 0, T = 1)} = 0.095 \]
Inference via math

\[P(F_{lu} = 1) = 0.1 \quad \text{and} \quad P(U = 1) = 0.8 \]

3. \[P(F_{lu} = 1|U = 1, T = 1) ? \]

\[P(F_{ev} = 1|F_{lu} = 1) = 0.9 \quad P(F_{ev} = 1|F_{lu} = 0) = 0.05 \]

\[P(T = 1|F_{lu} = 0, U = 0) = 0.1 \quad P(T = 1|F_{lu} = 0, U = 1) = 0.8 \]

\[P(T = 1|F_{lu} = 1, U = 0) = 0.9 \quad P(T = 1|F_{lu} = 1, U = 1) = 1.0 \]
Inference via math

3. \(P(F_{lu} = 1|U = 1, T = 1) \) ?

1. Compute joint probabilities

\[
P(F_{lu} = 1, U = 1, F_{ev} = 1, T = 1) \\
... \]

\[
P(F_{lu} = 0, U = 1, F_{ev} = 0, T = 1) ?
\]

2. Definition of conditional probability

\[
\frac{\sum_{y} P(F_{lu} = 1, U = 1, F_{ev} = y, T = 1)}{\sum_{x} \sum_{y} P(F_{lu} = x, U = 1, F_{ev} = y, T = 1) } = 0.122
\]

\[
P(F_{lu} = 1) = 0.1 \\
P(U = 1) = 0.8
\]

\[
P(F_{ev} = 1|F_{lu} = 1) = 0.9 \\
P(F_{ev} = 1|F_{lu} = 0) = 0.05
\]

\[
P(T = 1|F_{lu} = 0, U = 0) = 0.1 \\
P(T = 1|F_{lu} = 0, U = 1) = 0.8 \\
P(T = 1|F_{lu} = 1, U = 0) = 0.9 \\
P(T = 1|F_{lu} = 1, U = 1) = 1.0
\]
Inference via math

\[P(F_{lu} = 1) = 0.1 \quad P(U = 1) = 0.8 \]

Flu \quad Under-grad

Fever \quad Tired

\[P(F_{ev} = 1|F_{lu} = 1) = 0.9 \]
\[P(F_{ev} = 1|F_{lu} = 0) = 0.05 \]
\[P(T = 1|F_{lu} = 0, U = 0) = 0.1 \]
\[P(T = 1|F_{lu} = 0, U = 1) = 0.8 \]
\[P(T = 1|F_{lu} = 1, U = 0) = 0.9 \]
\[P(T = 1|F_{lu} = 1, U = 1) = 1.0 \]

Solving inference questions precisely is possible, but sometimes tedious.

Can we use sampling to do approximate inference?
Rejection Sampling
Rejection sampling algorithm

Step 0:
Require a fully specified Bayesian Network

\[P(F_{tu} = 1) = 0.1 \]
\[P(U = 1) = 0.8 \]

\[P(F_{ev} = 1 | F_{tu} = 1) = 0.9 \]
\[P(F_{ev} = 1 | F_{tu} = 0) = 0.05 \]
\[P(T = 1 | F_{tu} = 0, U = 0) = 0.1 \]
\[P(T = 1 | F_{tu} = 0, U = 1) = 0.8 \]
\[P(T = 1 | F_{tu} = 1, U = 0) = 0.9 \]
\[P(T = 1 | F_{tu} = 1, U = 1) = 1.0 \]
Rejection sampling algorithm

Inference question: What is \(P(F_{lu} = 1 | U = 1, T = 1) \)?

```python
def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = ...  # number of samples with \( (U=1,T=1) \)
samples_event =           # number of samples with \( (F_{lu}=1,U=1,T=1) \)
return len(samples_event)/len(samples_observation)
```

[flu, und, fev, tir]
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
    samples = sample_a_ton()
    samples_observation = ...
    # number of samples with $(U = 1, T = 1)$
    samples_event =
    # number of samples with $(F_{lu} = 1, U = 1, T = 1)$
    return len(samples_event)/len(samples_observation)
```

Probability $\approx \frac{\# \text{ samples with } (F_{lu} = 1, U = 1, T = 1)}{\# \text{ samples with } (U = 1, T = 1)}$
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

Probability $\approx \frac{\text{# samples with } (F_{lu} = 1, U = 1, T = 1)}{\text{# samples with } (U = 1, T = 1)}$

Why would this definition of approximate probability make sense?
Why would this approximate probability make sense?

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

Why would this definition of approximate probability make sense?

Probability $\approx \frac{\text{# samples with } (F_{lu} = 1, U = 1, T = 1)}{\text{# samples with } (U = 1, T = 1)}$

Recall our definition of probability as a frequency: $P(E) = \lim_{n\to\infty} \frac{n(E)}{n}$, $n = \# \text{ of total trials}$, $n(E) = \# \text{ trials where } E \text{ occurs}$
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
    samples = sample_a_ton()
    samples_observation = ...
    # number of samples with $(U = 1, T = 1)$
    samples_event =
    # number of samples with $(F_{lu} = 1, U = 1, T = 1)$
    return len(samples_event)/len(samples_observation)
```

[flu, und, fev, tir]

Sampling...
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 1, 0, 1]
[0, 0, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 1]
[0, 1, 0, 0]
[1, 1, 1, 1]
[0, 0, 1, 1]
[0, 1, 0, 1]
...
[0, 1, 0, 1]
Finished sampling
Rejection sampling algorithm

N_SAMPLES = 100000
Method: Sample a ton

create N_SAMPLES with likelihood proportional
to the joint distribution
def sample_a_ton():
 samples = []
 for i in range(N_SAMPLES):
 sample = make_sample() # a particle
 samples.append(sample)
 return samples

How do we make a sample
(F_{iu} = a, U = b, F_{ev} = c, T = d)
according to the joint probability?

Create a sample using the Bayesian Network!

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022
Rejection sampling algorithm

Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network

def make_sample():
 # prior on causal factors
 flu = bernoulli(0.1)
 und = bernoulli(0.8)

 # choose fever based on flu
 if flu == 1:
 fev = bernoulli(0.9)
 else:
 fev = bernoulli(0.05)

 # choose tired based on (undergrad and flu)
 #
 # TODO: fill in
 #
 # a sample from the joint has an
 # assignment to *all* random variables
 return [flu, und, fev, tir]
Rejection sampling algorithm

```python
# Method: Make Sample
# -------------------
# create a single sample from the joint distribution
# based on the medical "WebMD" Bayesian Network

def make_sample():
    # prior on causal factors
    flu = bernoulli(0.1)
    und = bernoulli(0.8)

    # choose fever based on flu
    if flu == 1:
        fev = bernoulli(0.9)
    else:
        fev = bernoulli(0.05)

    # choose tired based on (undergrad and flu)
    # TODO: fill in
    #
    # a sample from the joint has an
    # assignment to *all* random variables
    return [flu, und, fev, tir]
```

![Bayesian Network Diagram]

- \(P(F_{lu} = 1) = 0.1 \)
- \(P(U = 1) = 0.8 \)
- \(P(F_{ev} = 1|F_{lu} = 1) = 0.9 \)
- \(P(F_{ev} = 1|F_{lu} = 0) = 0.05 \)
- \(P(T = 1|F_{lu} = 0, U = 0) = 0.1 \)
- \(P(T = 1|F_{lu} = 0, U = 1) = 0.8 \)
- \(P(T = 1|F_{lu} = 1, U = 0) = 0.9 \)
- \(P(T = 1|F_{lu} = 1, U = 1) = 1.0 \)
Rejection sampling algorithm

Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network

def make_sample():
 # prior on causal factors
 flu = bernoulli(0.1)
 und = bernoulli(0.8)
 # choose fever based on flu
 if flu == 1:
 fev = bernoulli(0.9)
 else:
 fev = bernoulli(0.05)
 # choose tired based on (undergrad and flu)
 #
 # a sample from the joint has an
 # assignment to *all* random variables
 return [flu, und, fev, tir]
Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network

def make_sample():
 # prior on causal factors
 flu = bernoulli(0.1)
 und = bernoulli(0.8)
 # choose fever based on flu
 if flu == 1:
 fev = bernoulli(0.9)
 else:
 fev = bernoulli(0.05)
 # choose tired based on (undergrad and flu)
 # TODO: fill in
 #
 # a sample from the joint has an
 # assignment to *all* random variables
 return [flu, und, fev, tir]
Rejection sampling algorithm

Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network

def make_sample():
 # prior on causal factors
 flu = bernoulli(0.1)
 und = bernoulli(0.8)

 # choose fever based on flu
 if flu == 1:
 fev = bernoulli(0.9)
 else:
 fev = bernoulli(0.05)

 # choose tired based on (undergrad and flu)
 if flu == 0 and und == 0:
 tir = bernoulli(0.1)
 elif flu == 0 and und == 1:
 tir = bernoulli(0.8)
 elif flu == 1 and und == 0:
 tir = bernoulli(0.9)
 else:
 tir = bernoulli(1.0)

 # a sample from the joint has an
 # assignment to *all* random variables
 return [flu, und, fev, tir]
Method: Make Sample

create a single sample from the joint distribution
based on the medical "WebMD" Bayesian Network

def make_sample():
 # prior on causal factors
 flu = bernoulli(0.1)
 und = bernoulli(0.8)

 # choose fever based on flu
 if flu == 1:
 fev = bernoulli(0.9)
 else:
 fev = bernoulli(0.05)

 # choose tired based on (undergrad and flu)
 if flu == 0 and und == 0:
 tir = bernoulli(0.1)
 elif flu == 0 and und == 1:
 tir = bernoulli(0.8)
 elif flu == 1 and und == 0:
 tir = bernoulli(0.9)
 else:
 tir = bernoulli(1.0)

 # a sample from the joint has an
 # assignment to *all* random variables
 return [flu, und, fev, tir]
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = ...
    # number of samples with $(U = 1, T = 1)$
samples_event =
    # number of samples with $(F_{lu} = 1, U = 1, T = 1)$
return len(samples_event)/len(samples_observation)
```

[flu, und, fev, tir]
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
    samples = sample_a_ton()
    samples_observation = ...
    # number of samples with $(U = 1, T = 1)$
    samples_event = ...
    # number of samples with $(F_{lu} = 1, U = 1, T = 1)$
    return len(samples_event)/len(samples_observation)
```
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

def rejection_sampling(event, observation):
 samples = sample_a_ton()
 samples_observation = reject_inconsistent(samples, observation)
 samples_event =
 # number of samples with $(F_{lu} = 1, U = 1, T = 1)$
 return len(samples_event)/len(samples_observation)
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1 | U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
    samples = sample_a_ton()
    samples_observation = reject_inconsistent(samples, observation)
    samples_event =
        # number of samples with $(F_{lu} = 1, U = 1, T = 1)$
    return len(samples_event)/len(samples_observation)
```

Keep only samples that are consistent with the observation $(U = 1, T = 1)$.
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

def rejection_sampling(event, observation):
 samples = sample_a_ton()
 samples_observation = reject_inconsistent(samples, observation)
 samples_event = reject_inconsistent(samples_observation, event)
 return len(samples_event) / len(samples_observation)

Method: Reject Inconsistent

Rejects all samples that do not align with the outcome.
Returns a list of consistent samples.
def reject_inconsistent(samples, outcome):
 consistent_samples = []
 for sample in samples:
 if check_consistent(sample, outcome):
 consistent_samples.append(sample)
 return consistent_samples

(\begin{align*}
U &= 1, \\
T &= 1
\end{align*})
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation = reject_inconsistent(samples, observation)
samples_event = reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)
```

Conditional event = samples with $(F_{lu} = 1, U = 1, T = 1)$.
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =
    reject_inconsistent(samples, observation)
samples_event =
    reject_inconsistent(samples_observation, event)
return (samples_event

# Conditional
(F_{lu} = x, U = 1, F_{ev} = y, T = 1)  \quad (F_{lu} = 1)
return consistent_samples
```

What is $P(F_{lu} = 1|U = 1, T = 1)$?

Inference question:

```python
def reject_inconsistent(samples, outcome):
    consistent_samples
    return consistent_samples
```
Rejection sampling algorithm

Inference question: What is $P(F_{lu} = 1|U = 1, T = 1)$?

```python
def rejection_sampling(event, observation):
samples = sample_a_ton()
samples_observation =
    reject_inconsistent(samples, observation)
samples_event =
    reject_inconsistent(samples_observation, event)
return len(samples_event)/len(samples_observation)
```

Probability $\approx \frac{\text{# samples with } (F_{lu} = 1, U = 1, T = 1)}{\text{# samples with } (U = 1, T = 1)}$
To the code!
Rejection sampling

If you can sample enough from the joint distribution, you can answer any probability inference question.

With enough samples, you can correctly compute:

1. Probability estimates
2. Conditional probability estimates
3. Expectation estimates

Why? Because your samples represent the joint distribution incredibly well!

\[
P(\text{has flu} \mid \text{undergrad and is tired}) = 0.122
\]