20: Maximum Likelihood Estimation

Jerry Cain May 13, 2022

Table of Contents

- 2 Parameter Estimation
- 12 Maximum Likelihood Estimator
- 19 **argmax** and $LL(\theta)$
- 23 MLE: Bernoulli
- 33 MLE: Poisson, Uniform
- 44 MLE: Gaussian

Parameter Estimation

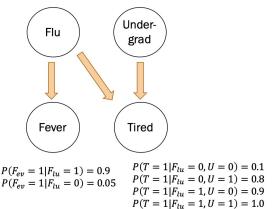
Story so far

At this point:

If you are provided with a model and all the necessary probabilities, you can make predictions!

 $Y \sim Poi(5)$

$$X_1, \dots, X_n$$
 i.i.d.
 $X_i \sim \text{Ber}(0.2),$
 $X = \sum_{i=1}^n X_i$



P(U = 1) = 0.8

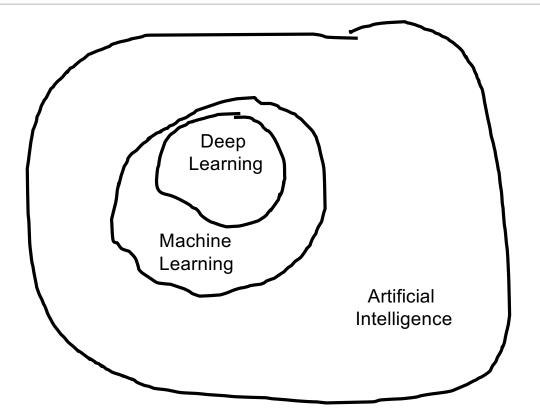
 $P(F_{lu}=1)=0.1$

But how do we learn the probabilities for a given model?

What if you want to learn the structure of the model, too? Glimpse: Week 10

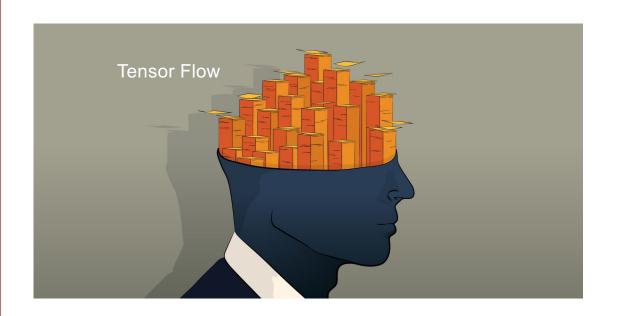
Machine Learning

AI and Machine Learning



ML: Rooted in probability theory

Alright, so Deep Learning now?



Not so fast...

Once upon a time...

...there was parameter estimation.

Some estimators

 X_1, X_2, \dots, X_n are n i.i.d. random variables, where X_i drawn from distribution F with $E[X_i] = \mu$, $Var(X_i) = \sigma^2$.

Sample mean:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

unbiased **estimate** of μ

Sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

unbiased estimate of σ^2

What are parameters?

<u>def</u> Most random variables we we've seen thus far are parametric models:

Distribution = model + parameter θ

<u>ex</u> The distribution Ber(0.2) = Bernoulli model, parameter $\theta = 0.2$.

For each of the distributions below, what is the parameter θ ?

1. Ber(p)

 $\theta = p$

- 2. $Poi(\lambda)$
- 3. Uni(α , β)
- 4. $\mathcal{N}(\mu, \sigma^2)$
- 5. Y = mX + b

What are parameters?

<u>def</u> Many random variables we have learned so far are parametric models:

Distribution = model + parameter θ

<u>ex</u> The distribution Ber(0.2) = Bernoulli model, parameter $\theta = 0.2$.

For each of the distributions below, what is the parameter θ ?

1. Ber(
$$p$$
) $\theta = p$

2.
$$Poi(\lambda)$$
 $\theta = \lambda$

3. Uni
$$(\alpha, \beta)$$
 $\theta = (\alpha, \beta)$

4.
$$\mathcal{N}(\mu, \sigma^2)$$
 $\theta = (\mu, \sigma^2)$

5.
$$Y = mX + b$$
 $\theta = (m, b)$

 θ is the parameter of a distribution. θ can be a vector of parameters!

Why do we care?

In the real world, we don't know the true parameters.

But we do get to observe data:

times coin comes up heads, lifetimes of disk drives produced, # visitors to website per day, offer amount for a used bike

def estimator $\hat{\theta}$: a random variable estimating true parameter θ .

In parameter estimation,

We use the **point estimate** of parameter estimate (best single value):

- Provides a understanding of the process generating the data
- Can make future **predictions** based that model
- Can even run simulations to generate more data

Defining the likelihood of data: Bernoulli

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- X_i was drawn from distribution $F = \text{Ber}(\theta)$ with unknown parameter θ .
- Observed sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

How likely is this sample if, say, $\theta = 0.4$?

$$P(\text{sample}|\theta = 0.4) = (0.4)^8(0.6)^2 = 0.000236$$

Likelihood of data given parameter $\theta = 0.4$

Is there a better choice for θ ?

Defining the likelihood of data

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

- X_i was drawn from a distribution with density function $f(X_i|\theta)$.
- Sample: $(X_1, X_2, ..., X_n)$

Likelihood question:

How likely is the sample $(X_1, X_2, ..., X_n)$ given the parameter θ ?

Likelihood function, $L(\theta)$:

$$L(\theta) = f(X_1, X_2, \dots, X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$$

This is just a product, since X_i are i.i.d.

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n , drawn from a distribution $f(X_i|\theta)$.

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\arg\max} \ L(\theta)$$

Consider a sample of n i.i.d. random variables $X_1, X_2, ..., X_n$, drawn from a distribution $f(X_i|\theta)$.

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$heta_{MLE} = rg \max_{ heta} \ L(heta)$$
 Likelihood of your sample
$$L(heta) = \prod_{i=1}^n f(X_i | heta)$$

For continuous X_i , $f(X_i|\theta)$ is PDF, and for discrete X_i , $f(X_i|\theta)$ is PMF

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n , drawn from a distribution $f(X_i|\theta)$.

<u>def</u> The Maximum Likelihood Estimator (MLE) of θ is the value of θ that maximizes $L(\theta)$.

$$\theta_{MLE} = \underset{\theta}{\operatorname{arg\,max}} L(\theta)$$

The argument θ that maximizes $L(\theta)$

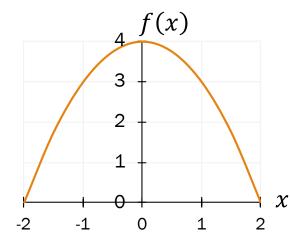
argmax and log likelihood

New function: arg max

$$\underset{x}{\operatorname{arg\,max}} f(x)$$

The argument x that maximizes the function f(x).

Let
$$f(x) = -x^2 + 4$$
,
where $-2 < x < 2$.



- 1. $\max f(x)$?
- arg max f(x)?

Argmax properties

$$\arg\max_{x} f(x) \qquad \text{The argument } x \text{ that } \\ \max f(x) \qquad \max \text{ maximizes the function } f(x).$$

$$= \arg\max_{x} \log f(x) \qquad \text{ (log is an increasing function: } \\ x < y \Leftrightarrow \log x < \log y)$$

$$= \arg\max_{x} (c \log f(x)) \qquad (x < y \Leftrightarrow c \log x < c \log y)$$

for any positive constant *c*

Finding the argmax with calculus

$$\hat{x} = \arg\max_{x} f(x)$$

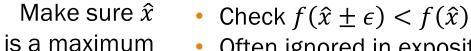
Let
$$f(x) = -x^2 + 4$$
, where $-2 < x < 2$.

Differentiate w.r.t. argmax's argument

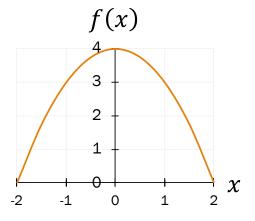
$$\frac{d}{dx}f(x) = \frac{d}{dx}(x^2 + 4) = 2x$$

Set to 0 and solve

$$2x = 0$$
 \Rightarrow $\hat{x} = 0$



- Often ignored in expository derivations
- We'll ignore it here too (and won't require it in class)



Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n , drawn from a distribution $f(X_i|\theta)$.

$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

 θ_{MLE} maximizes the likelihood of our sample, $L(\theta)$:

$$\theta_{MLE} = \arg\max_{\theta} L(\theta)$$

 θ_{MLE} also maximizes the log-likelihood function, $LL(\theta)$:

$$\theta_{MLE} = \underset{\theta}{\arg\max} \ LL(\theta)$$

$$LL(\theta) = \log L(\theta) = \log \left(\prod_{i=1}^{n} f(X_i | \theta) \right) = \sum_{i=1}^{n} \log f(X_i | \theta)$$

 $LL(\theta)$ is often easier to differentiate than $L(\theta)$.

MLE: Bernoulli

Computing the MLE

 $\theta_{MLE} = \arg\max_{\theta} LL(\theta)$

General approach for finding θ_{MLE} , the MLE of θ :

- Determine
- formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i | \theta)$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ

$$\frac{\partial LL(\theta)}{\partial \theta}$$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2022

To maximize:
$$\frac{\partial LL(\theta)}{\partial \theta} = 0$$

3. Solve resulting equations

> (algebra or computer)

- 4. Make sure derived $\hat{\theta}_{MLE}$ is a maximum
 - Check $LL(\theta_{MLE} \pm \epsilon) < LL(\theta_{MLE})$
 - Often ignored in expository derivations
 - We'll ignore it here too (and won't require it in class)

 $LL(\theta)$ is often easier to differentiate than $L(\theta)$.

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

Let $X_i \sim \text{Ber}(p)$.

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

 $f(X_i|p) = \begin{cases} p & \text{if } X_i = 1\\ 1 - p & \text{if } X_i = 0 \end{cases}$

- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0
- 3. Solve resulting equations

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p)$$

$$f(X_i|p) = \begin{cases} p & \text{if } X_i = 1\\ 1 - p & \text{if } X_i = 0 \end{cases}$$

- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$ where $X_i \in \{0,1\}$

3. Solve resulting equations

- Is differentiable with respect to p
 Valid PMF over discrete domain

Consider a sample of n i.i.d. RVs X_1, X_2, \dots, X_n . What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

1. Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log f(X_i|p) = \sum_{i=1}^{n} \log(p^{X_i}(1-p)^{1-X_i})$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$= \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

3. Solve resulting equations

$$= Y(\log p) + (n - Y) \log(1 - p)$$
, where $Y = \sum_{i=1}^{n} X_i$

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

$$= Y(\log p) + (n - Y) \log(1 - p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

2. Differentiate
$$LL(\theta)$$
 w.r.t. (each) θ , set to 0 $\frac{\partial LL(\theta)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0$

3. Solve resulting equations

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

$$= Y(\log p) + (n - Y) \log(1 - p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

2. Differentiate
$$LL(\theta)$$
 w.r.t. (each) θ , set to 0 $\frac{\partial LL(\theta)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0$

3. Solve resulting equations

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = p_{MLE}$?

- Let $X_i \sim \text{Ber}(p)$.
- $f(X_i|p) = p^{X_i}(1-p)^{1-X_i}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

$$= Y(\log p) + (n - Y) \log(1 - p), \text{ where } Y = \sum_{i=1}^{n} X_i$$

2. Differentiate
$$LL(\theta)$$
 w.r.t. (each) θ , set to 0
$$\frac{\partial LL(\theta)}{\partial p} = Y \frac{1}{p} + (n - Y) \frac{-1}{1 - p} = 0$$

3. Solve resulting equations

$$p_{MLE} = \frac{1}{n}Y = \frac{1}{n}\sum_{i=1}^{n}X_{i}$$

MLE of the Bernoulli parameter, p_{MLE} , is the unbiased estimate of the mean, \bar{X} (sample mean)

Quick check

• You draw n i.i.d. random variables X_1, X_2, \dots, X_n from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- 1. What is p_{MLE} , the MLE of the parameter p?
 - A. 1.0
 - B. 0.5
 - - 0.2
 - E. None/other

$$p_{MLE} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Quick check

You draw n i.i.d. random variables X_1, X_2, \dots, X_n from the distribution F, yielding the following sample:

$$[0, 0, 1, 1, 1, 1, 1, 1, 1] (n = 10)$$

- Suppose distribution F = Ber(p) with unknown parameter p.
- What is p_{MLE} , the MLE of the parameter p?

- C_{-} 0.8
- 2. What is the likelihood $L(\theta)$ of this particular sample?

$$f(X_i|p) = p^{X_i}(1-p)^{1-X_i} \text{ where } X_i \in \{0,1\}$$

$$L(\theta) = \prod_{i=1}^n f(X_i|p) \text{ where } \theta = p$$

$$= p^8(1-p)^2$$

MLE: Poisson and Uniform

Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$.

• Let $X_i \sim \text{Poi}(\lambda)$.

What is $\theta_{MIF} = \lambda_{MIF}$?

• PMF: $f(X_i | \lambda) = \frac{e^{-\lambda} \lambda^{X_i}}{X_i!}$ What is $\theta_{MLE} = \lambda_{MLE}$?

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$
$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!) \quad \text{(using natural log, ln } e = 1)$$

Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = \lambda_{MLE}$?

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log\left(\frac{e^{-\lambda}\lambda^{X_i}}{X_i!}\right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$
$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!) \quad \text{(using natural log, ln } e = 1)$$

Uniterentiate $LL(\theta)$ w.r.t. (each) θ , set to 0 $\frac{\partial LL(\theta)}{\partial \lambda} = ?$ 2. Differentiate $LL(\theta)$

$$\frac{\partial LL(\theta)}{\partial \lambda} = ?$$

A.
$$-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i + n \log \lambda - \sum_{i=1}^{n} \frac{1}{X_i!} \cdot \frac{\partial X_i!}{\partial X_i}$$
B. $-n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i$
None/other/ don't know

$$B. -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i$$

Maximum Likelihood with Poisson

Consider a sample of n i.i.d. RVs $X_1, X_2, ..., X_n$. What is $\theta_{MLE} = \lambda_{MLE}$?

- Let $X_i \sim \text{Poi}(\lambda)$. PMF: $f(X_i|\lambda) = \frac{e^{-\lambda}\lambda^{X_i}}{X_i!}$

Determine formula for $LL(\theta)$

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{e^{-\lambda} \lambda^{X_i}}{X_i!} \right) = \sum_{i=1}^{n} (-\lambda \log e + X_i \log \lambda - \log X_i!)$$

$$= -n\lambda + \log(\lambda) \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log(X_i!) \quad \text{(using natural log, ln } e = 1)$$

2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0

$$\frac{\partial LL(\theta)}{\partial \lambda} = -n + \frac{1}{\lambda} \sum_{i=1}^{n} X_i = 0$$

3. Solve resulting equations

$$\lambda_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

MLE of the Poisson parameter, λ_{MLE} , is the unbiased estimate of the mean, \bar{X} (sample mean)

Quick check

- A particular experiment can be modeled as a Poisson RV with parameter λ , in terms of events/minute.
- $\lambda_{MLE} = \frac{1}{n} \sum X_i$
- Collect data: observe 53 events over the next 10 minutes. What is λ_{MLE} ?
- Is the Bernoulli MI F an unbiased estimator of the Bernoulli parameter p?
- Is the Poisson MLE an unbiased estimator of the Poisson variance?
- 4. What does unbiased mean? $E[estimator] = true_thing$

Unbiased: If you could repeat your experiment, on average you would get what you are looking for.

Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.
$$f(X_i | \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \alpha \leq x_i \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Determine formula for $L(\theta)$

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

- 2. Differentiate $LL(\theta)$ w.r.t. (each) θ , set to 0
- A. Great, let's do it
- B. Differentiation is hard
-) Constraint $\alpha \leq x_1, x_2, ..., x_n \leq \beta$ makes differentiation hard

Maximum Likelihood with Uniform: Sample

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Suppose $X_i \sim \text{Uni}(0,1)$. [0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75]

You observe data:

A. Uni($\alpha = 0$, $\beta = 1$)

Which parameters would give you maximum $L(\theta)$?

B. Uni(
$$\alpha = 0.15, \beta = 0.75$$
)

C. Uni(
$$\alpha = 0.15, \beta = 0.70$$
)

Maximum Likelihood with Uniform: Sample

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \text{Uni}(\alpha, \beta)$$
.

$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

Suppose $X_i \sim Uni(0,1)$.

[0.15, 0.20, 0.30, 0.40, 0.65, 0.70, 0.75]

You observe data:

Which parameters would give you maximum $L(\theta)$?

A. Uni(
$$\alpha = 0$$
 , $\beta = 1$) $(1)^7 = 1$

B. Uni(
$$\alpha = 0.15, \beta = 0.75$$
) $\left(\frac{1}{0.6}\right)^7 = 59.5$

C. Uni(
$$\alpha = 0.15, \beta = 0.70$$
) $\left(\frac{1}{0.55}\right)^6 \cdot 0 = 0$

Original parameters may not yield maximum likelihood.

Maximum Likelihood with Uniform

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

Let
$$X_i \sim \mathrm{Uni}(\alpha, \beta)$$
.
$$L(\theta) = \begin{cases} \left(\frac{1}{\beta - \alpha}\right)^n & \text{if } \alpha \leq x_1, x_2, \dots, x_n \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

$$\theta_{MLE}$$
: $\alpha_{MLE} = \min(x_1, x_2, ..., x_n)$ $\beta_{MLE} = \max(x_1, x_2, ..., x_n)$

$$\beta_{MLE} = \max(x_1, x_2, ..., x_n)$$

Intuition:

• Want interval size $(\beta - \alpha)$ to be as small as possible to maximize likelihood function per datapoint

(demo)

Need to make sure all observed data is in interval (if not, then $L(\theta) = 0$)

Small samples = problems with MLE

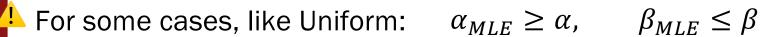
Maximum Likelihood Estimator θ_{MLE} :

$$\theta_{MLE} = \arg\max_{\theta} L(\theta)$$

- Best explains data we have seen
- Does not attempt to generalize to data not yet observed.

In many cases,
$$\mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 Sample mean (MLE for Bernoulli p , Poisson λ , Normal μ)

Unbiased $(E[\mu_{MLE}] = \mu \text{ regardless of size of sample, } n)$



- Biased. Problematic for small sample size
- Example: If n=1 then $\alpha=\beta$, yielding an invalid distribution

Properties of MLE

Maximum Likelihood Estimator:

$$\theta_{MLE} = \arg\max_{\theta} L(\theta)$$

- Best explains data we have seen
- Does not attempt to generalize to data not yet observed.

- Often used when sample size n is large relative to parameter space
- Potentially biased (though asymptotically less so, as $n \to \infty$)
- Consistent: $\lim_{n\to\infty} P(|\hat{\theta} \theta| < \varepsilon) = 1 \text{ where } \varepsilon > 0$

As $n \to \infty$ (i.e., more data), probability that $\hat{\theta}$ significantly differs from θ is zero

MLE: Gaussian

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0 equations

$$LL(\theta) = \sum_{i=1}^{n} \log \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i - \mu)^2/(2\sigma^2)} \right) = \sum_{i=1}^{n} \left[-\log(\sqrt{2\pi}\sigma) - (X_i - \mu)^2/(2\sigma^2) \right]$$
 (using natural log)

$$= -\sum_{i=1}^{n} \log(\sqrt{2\pi}\sigma) - \sum_{i=1}^{n} [(X_i - \mu)^2 / (2\sigma^2)]$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

1. Determine formula for $LL(\theta)$

- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0 equations

with respect to
$$\mu$$

$$LL(\theta) = -\sum_{i=1}^{n} \log(\sqrt{2\pi}\sigma) - \sum_{i=1}^{n} [(X_i - \mu)^2/(2\sigma^2)]$$

$$\frac{\partial LL(\theta)}{\partial \mu} = \sum_{i=1}^{n} [2(X_i - \mu)/(2\sigma^2)]$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

- 1. Determine formula for $LL(\theta)$
- 2. Differentiate $LL(\theta)$ 3. Solve resulting w.r.t. (each) θ , set to 0 equations

with respect to
$$\mu$$

$$LL(\theta) = -\sum_{i=1}^{n} \log(\sqrt{2\pi}\sigma) - \sum_{i=1}^{n} [(X_i - \mu)^2/(2\sigma^2)] \quad \text{with respect to } \sigma$$

$$\partial LL(\theta) \quad \sum_{i=1}^{n} 1 \quad \sum_{i=1}^{n} 1$$

$$\frac{\partial LL(\theta)}{\partial \mu} = \sum_{i=1}^{n} \left[2(X_i - \mu)/(2\sigma^2) \right]$$

$$\frac{\partial LL(\theta)}{\partial \mu} = \sum_{i=1}^{n} \left[2(X_i - \mu)/(2\sigma^2) \right] \qquad \frac{\partial LL(\theta)}{\partial \sigma} = -\sum_{i=1}^{n} \frac{1}{\sigma} + \sum_{i=1}^{n} 2(X_i - \mu)^2/(2\sigma^3)$$

$$= \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

$$= -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0$$
 Mehran Sahami, and Jerry Cain, CS

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu) = 0$$

3. Solve resulting equations, two unknowns:
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0 - \frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0$$

First, solve for
$$\mu_{MLE}$$
:

First, solve for
$$\mu_{MLE}$$
:
$$\frac{1}{\sigma^2} \sum_{i=1}^n X_i - \frac{1}{\sigma^2} \sum_{i=1}^n \mu = 0 \quad \Rightarrow \quad \sum_{i=1}^n X_i = n\mu \quad \Rightarrow \quad \mu_{MLE} = \frac{1}{n} \sum_{i=1}^n X_i$$
 unbiased unbiased

$$\Rightarrow \mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 unbiased

Consider a sample of n i.i.d. random variables X_1, X_2, \dots, X_n .

• Let
$$X_i \sim \mathcal{N}(\mu, \sigma^2)$$
.

$$f(X_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(X_i-\mu)^2/(2\sigma^2)}$$

What is $\theta_{MLE} = (\mu_{MLE}, \sigma_{MLE}^2)$?

equations

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0$$

3. Solve resulting equations, and two unknowns:
$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = 0 - \frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = 0$$

First, solve for
$$\mu_{MLE}$$
:

First, solve for
$$\mu_{MLE}$$
:
$$\frac{1}{\sigma^2} \sum_{i=1}^n X_i - \frac{1}{\sigma^2} \sum_{i=1}^n \mu = 0 \quad \Rightarrow \quad \sum_{i=1}^n X_i = n\mu \quad \Rightarrow \quad \mu_{MLE} = \frac{1}{n} \sum_{i=1}^n X_i$$
 unbiased unbiased

$$\Rightarrow \mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 unbiased

Next, solve for
$$\sigma_{MLE}$$
:

Next, solve for
$$\sigma_{MLE}$$
:
$$\frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2 = \frac{n}{\sigma} \Rightarrow \sum_{i=1}^n (X_i - \mu)^2 = \sigma^2 n \Rightarrow \sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu_{MLE})^2$$
 biased