Section #3: Discrete and Continuous Random Variables

1 Warmups

1.1 Random Variables and Expectation

1. Definitions:

(a) If we let X be a random variable, then what is $E[X]$? What is $E[g(X)]$?

(b) For random variables X_1, \ldots, X_n, what is $E[\sum_{i=1}^{n} X_i]$?

1.2 Website Visits

You have a website where only one visitor can be on the site at a time, but there is an infinite queue of visitors, so that immediately after a visitor leaves, a new visitor will come onto the website. On average, visitors leave your website after 5 minutes. Assume that the length of stay is exponentially distributed. What is the probability that a user stays more than 10 minutes, if we calculate this probability:

a. using the random variable X, defined as the length of stay of the user?

b. using the random variable Y, defined as the number of users who leave your website over a 10-minute interval?

1.3 Continuous Random Variables

Let X be a continuous random variable with the following probability density function:

$$f_X(x) = \begin{cases} c(e^{x-1} + e^{-x}) & \text{if } 0 \leq x \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

a. Find the value of c that makes f_X a valid probability distribution.

b. What is $P(X > 0.75)$?
2 Problems

2.1 Taking Expectation: Breaking Vegas

Preamble: When a random variable fits neatly into a family we’ve seen before (e.g. Binomial), we get its expectation for free. When it does not, we have to use the definition of expectation.

Problem: If you bet on “Red” in Roulette, there is \(p = \frac{18}{38} \) that you win $Y and a \((1 - p)\) probability that you lose $Y. Consider this algorithm for a series of bets:

1. Let \(Y = $1 \).
2. Bet \(Y \).
3. If you win, then stop.
4. If you lose, then set \(Y \) to be 2\(Y \) and goto step (2).

What are your expected winnings when you stop? It will help to recall that the sum of a geometric series \(a^0 + a^1 + a^2 + \cdots = \frac{1}{1-a} \) if \(0 < a < 1 \). Vegas breaks you: Why doesn’t everyone do this?

2.2 Linearity of Expectation: Hat-Check

Preamble: Typically, it is easier to use linearity of expectation for sums of random variables than it is to manually compute a PMF and applying the definition.

Problem: \(n \) people go to a party and drop off their hats to a hat-check person. When the party is over, a different hat-check person is on duty, and returns the \(n \) hats randomly back to each person. Let \(X \) be the random variable representing the number of people who get their own hat back.

a. For \(n = 3 \), find \(E[X] \) by first computing the probability mass function \(p_X \), and then applying the definition of expectation.

b. Find a general formula for \(E[X] \), for any positive integer \(n \).

2.3 Sending Bits to Space

Preamble: When sending binary data to satellites (or really over any noisy channel), the bits can be flipped with high probability. In 1947, Richard Hamming developed a system to more reliably send data. By using Error Correcting Hamming Codes, you can send a stream of 4 bits along with 3 redundant bits. If zero or one of the seven bits are corrupted, using error correcting codes, a receiver can identify the original 4 bits.

Problem: Lets consider the case of sending a signal to a satellite where each bit is independently flipped with probability \(p = 0.1 \).

a. If you send 4 bits, what is the probability that the correct message was received (i.e. none of the bits are flipped).
b. If you send 4 bits, with 3 Hamming error correcting bits, what is the probability that a correctable message was received?

c. Instead of using Hamming codes, you decide to send 100 copies of each of the four bits. If for every single bit, more than 50 of the copies are not flipped, the signal will be correctable. What is the probability that a correctable message was received?

2.4 More Bit Strings

Once again, we’re sending bit strings across potentially noisy communication channels. However, now we’re identifying bit string corruptions in a slightly different way. Now, whenever we want to send \(n \) bits of information, we send an extra as the \(n + 1 \)st bit. Specifically, if the sum of the \(n \) data bits is even, the extra \(n + 1 \)st bit sent is set to 0. If the sum of the \(n \) data bits is odd, then \(n + 1 \)st bit appended is set to 1. If the recipient of the bit string adds all bits and gets an odd number, that recipient knows there’s a problem and can request a repeat transmission. We’ll assume that each bit is erroneously inverted with probability nonzero \(p \leq 0.5 \), and that all bit corruptions are independent of one another.

a. Assuming that \(n = 4 \) and \(p = 0.1 \), what is the probability the transmitted message has errors that go undetected?

b. For arbitrary \(n \) and \(p \), what is the probability that a bit string has errors that go undetected? You may leave it as a sum of \(O(n) \) terms.

c. Simplify your answer from part b by letting

\[
a = \sum_{k \text{ odd}} \binom{n+1}{k} p^k (1-p)^{n+1-k} \\
b = \sum_{k \text{ even}} \binom{n+1}{k} p^k (1-p)^{n+1-k}
\]

and then considering what \(a + b \) and \(a - b \) equal. Leverage the fact that, in general, \((x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}\).

3 Previous Exam Questions

3.1 Winter 2021: Quiz 2

When a patient has eye inflammation, eye doctors "grade" the inflammation. When "grading" inflammation they randomly look at a single 1 millimeter by 1 millimeter square in the patients eye and count how many "cells" they see.

There is uncertainty in these counts. If the true average number of cells for a given patients eye is 6, the doctor could get a different count (say 4, or 5, or 7) just by chance. As of 2021, modern eye medicine does not have a sense of uncertainty for their inflammation grades! In this problem we are going to change that. At the same time we are going to learn about poisson distributions over space.
Figure 1: A 1x1mm sample used for inflammation grading. Inflammation is graded by counting cells in a randomly chosen 1mm by 1mm square. This sample has 5 cells

a. Explain, as if teaching, why the number of cells observed in a 1x1 square is governed by a Poisson process. Make sure to explain how a binomial distribution could approximate the count of cells. Explain what \(\lambda \) means in this context. Note: for a given person's eye, the presence of a cell in a location is independent of the presence of a cell in another location. 100 word limit. Pictures not necessary, but allowed.

b. For a given patient, the true average rate of cells is 5 cells per 1x1 sample. What is the probability that in a single 1x1 sample the doctor counts 4 cells? In addition to providing an expression, please compute a numeric answer.

c. For a given patient, the true average rate of cells is 5 cells per 1mm by 1mm sample. In an attempt to be more precise, the doctor counts cells in two different, larger 2mm by 2mm samples. Assume that the occurrences of cells in one 2mm by 2mm samples are independent of the occurrences in any other 2mm by 2mm samples. What is the probability that she counts 20 cells in the first samples and 20 cells in the second? In addition to providing an expression, please compute a numeric answer.