Variance
Average temperatures

Stanford, CA
$E[\text{high}] = 68^\circ F$
$E[\text{low}] = 52^\circ F$

Washington, DC
$E[\text{high}] = 67^\circ F$
$E[\text{low}] = 51^\circ F$

Is $E[X]$ enough? Does it capture everything?
Average temperatures

Stanford, CA
\[E[\text{high}] = 68^\circ F \]
\[E[\text{low}] = 52^\circ F \]

Washington, DC
\[E[\text{high}] = 67^\circ F \]
\[E[\text{low}] = 51^\circ F \]

Normalized histograms are approximations of probability mass functions, i.e., PMFs.
Variance = measure of "spread"

Consider the following three distributions (PMFs):

- Expectation: $E[X] = 3$ for all distributions
- But the shape and spread across distributions are very different!
- **Variance**, $\text{Var}(X)$: a formal quantification of spread
The variance of a random variable X with mean $E[X] = \mu$ is

$$\text{Var}(X) = E[(X - \mu)^2]$$

- Also written as: $E[(X - E[X])^2]$
- Note: $\text{Var}(X) \geq 0$
- Other names: 2nd central moment, or square of the standard deviation

$$\text{SD}(X) = \sqrt{\text{Var}(X)}$$

Units of X^2 Units of X
Variance of Stanford weather

Stanford, CA

\(E[\text{high}] = 68 \, ^\circ\text{F} \)

\(E[\text{low}] = 52 \, ^\circ\text{F} \)

Stanford high temps

\[P(X = x) \]

\[E[X] = \mu = 68 \, ^\circ\text{F} \]

\[\text{Variance} \quad E[(X - \mu)^2] = 39 \, (^\circ\text{F})^2 \]

\[\text{Standard deviation} \quad = 6.2 \, ^\circ\text{F} \]
Comparing variance

Stanford, CA

\(E[\text{high}] = 68 \degree F \)

\[\text{Var}(X) = 39 \ (\degree F)^2 \]

Washington, DC

\(E[\text{high}] = 67 \degree F \)

\[\text{Var}(X) = 248 \ (\degree F)^2 \]
Properties of Variance
Properties of variance

Definition

\[\text{Var}(X) = E[(X - E[X])^2] \]

Def standard deviation

\[\text{SD}(X) = \sqrt{\text{Var}(X)} \]

Property 1

\[\text{Var}(X) = E[X^2] - (E[X])^2 \]

Property 2

\[\text{Var}(aX + b) = a^2 \text{Var}(X) \]

- Property 1 is often easier to manipulate than the original definition
- Unlike expectation, variance is not linear
Properties of variance

Definition

\[\text{Var}(X) = E[(X - E[X])^2] \]

\text{def standard deviation}

\[\text{SD}(X) = \sqrt{\text{Var}(X)} \]

Property 1

\[\text{Var}(X) = E[X^2] - (E[X])^2 \]

Property 2

\[\text{Var}(aX + b) = a^2 \text{Var}(X) \]
Computing variance, a proof

\[\text{Var}(X) = E[(X - E[X])^2] = E[(X - \mu)^2] \]

Let \(E[X] = \mu \)

\[= \sum_x (x - \mu)^2 p(x) \]
\[= \sum_x (x^2 - 2\mu x + \mu^2) p(x) \]
\[= \sum_x x^2 p(x) - 2\mu \sum_x xp(x) + \mu^2 \sum_x p(x) \]
\[= E[X^2] - 2\mu E[X] + \mu^2 \cdot 1 \]
\[= E[X^2] - 2\mu^2 + \mu^2 \]
\[= E[X^2] - \mu^2 \]
\[= E[X^2] - (E[X])^2 \]
Variance of a 6-sided die

Let \(Y = \) outcome of a single die roll. Recall \(E[Y] = 7/2 \).
Calculate the variance of \(Y \).

1. **Approach #1: Definition**

\[
\text{Var}(Y) = \frac{1}{6} \left(1 - \frac{7}{2} \right)^2 + \frac{1}{6} \left(2 - \frac{7}{2} \right)^2 + \frac{1}{6} \left(3 - \frac{7}{2} \right)^2 + \frac{1}{6} \left(4 - \frac{7}{2} \right)^2 + \frac{1}{6} \left(5 - \frac{7}{2} \right)^2 + \frac{1}{6} \left(6 - \frac{7}{2} \right)^2
\]

\[
= \frac{35}{12}
\]

2. **Approach #2: A property**

\[
E[Y^2] = \frac{1}{6} [1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2] = \frac{91}{6}
\]

\[
\text{Var}(Y) = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}
\]
Properties of variance

Definition: \(\text{Var}(X) = E[(X - E[X])^2] \)

Def standard deviation: \(\text{SD}(X) = \sqrt{\text{Var}(X)} \)

Property 1: \(\text{Var}(X) = E[X^2] - (E[X])^2 \)

Property 2: \(\text{Var}(aX + b) = a^2 \text{Var}(X) \)
Property 2: A proof

Property 2 \quad \text{Var}(aX + b) = a^2 \text{Var}(X)

Proof: \quad \text{Var}(aX + b)

= E[(aX + b)^2] - (E[aX + b])^2 \quad \text{Property 1}

= E[a^2X^2 + 2abX + b^2] - (aE[X] + b)^2

= a^2E[X^2] + 2abE[X] + b^2 - (a^2(E[X])^2 + 2abE[X] + b^2)

= a^2E[X^2] - a^2(E[X])^2

= a^2(E[X^2] - (E[X])^2)

= a^2 \text{Var}(X) \quad \text{Property 1}
Bernoulli RV
Consider an experiment with two outcomes: "success" and "failure".

A **Bernoulli** random variable X maps "success" to 1 and "failure" to 0. Other names: *indicator* random variable, *Boolean* random variable

$$X \sim \text{Ber}(p)$$

<table>
<thead>
<tr>
<th>PMF</th>
<th>$P(X = 1) = p(1) = p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = 0) = p(0) = 1 - p$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expectation</th>
<th>$E[X] = p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance</td>
<td>$\text{Var}(X) = p(1 - p)$</td>
</tr>
</tbody>
</table>

Support: \{0, 1\}

Examples:
- Coin flip
- Random binary digit
- Whether Doris barks
Defining Bernoulli RVs

Run a program
• Crashes w.p. p
• Works w.p. $1 - p$

Let X: 1 if crash

$$X \sim \text{Ber}(p)$$

$$P(X = 1) = p$$

$$P(X = 0) = 1 - p$$

Serve an ad.
• User clicks w.p. 0.2
• Ignores otherwise

Let X: 1 if clicked

$$X \sim \text{Ber}(__\)$$

$$P(X = 1) = __$$

$$P(X = 0) = __$$

Roll two dice.
• Success: roll a 10
• Failure: anything else

Let X: 1 if success

$$X \sim \text{Ber}(__)$$

$$E[X] = __$$
Binomial RV
Binomial Random Variable

Consider an experiment: \(n \) independent trials of \(\text{Ber}(p) \) random variables. A **Binomial** random variable \(X \) is the number of successes in \(n \) trials.

\[
X \sim \text{Bin}(n, p)
\]

PMF

\[
P(X = k) = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

Expectation

\[
E[X] = np
\]

Variance

\[
\text{Var}(X) = np(1 - p)
\]

Examples:

- # heads in \(n \) coin flips
- # of 1’s in randomly generated length \(n \) bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)
Reiterating notation

The parameters of a Binomial random variable:
- \(n \): number of independent trials
- \(p \): probability of success on each trial

\[X \sim \text{Bin}(n, p) \]
Reiterating notation

If X is a binomial with parameters n and p, the PMF of X is

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

- **Probability that X takes on the value k**
- **Probability Mass Function for a Binomial**
Three coin flips

Three fair (with $p = 0.5$) coins are flipped.

- X is number of heads
- $X \sim \text{Bin}(3, 0.5)$

Compute the following event probabilities:

\[
P(X = 0)
\]

\[
P(X = 1)
\]

\[
P(X = 2)
\]

\[
P(X = 3)
\]

\[
P(X = 7)
\]

\[
P(\text{event})
\]
Three coin flips

Three fair (with $p = 0.5$) coins are flipped.
- X is number of heads
- $X \sim \text{Bin}(3, 0.5)$

Compute the following event probabilities:

\[
P(X = 0) = p(0) = \binom{3}{0} p^0 (1-p)^3 = \frac{1}{8}
\]

\[
P(X = 1) = p(1) = \binom{3}{1} p^1 (1-p)^2 = \frac{3}{8}
\]

\[
P(X = 2) = p(2) = \binom{3}{2} p^2 (1-p)^1 = \frac{3}{8}
\]

\[
P(X = 3) = p(3) = \binom{3}{3} p^3 (1-p)^0 = \frac{1}{8}
\]

\[
P(X = 7) = p(7) = 0
\]

Extra math note:
By Binomial Theorem, we can prove
\[
\sum_{k=0}^{n} P(X = k) = 1
\]
Consider an experiment: \(n \) independent trials of \(\text{Ber}(p) \) random variables.

A binomial random variable \(X \) is the number of successes in \(n \) trials.

PMF

\[
P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]

\(k = 0, 1, \ldots, n \):

Range: \(\{0, 1, \ldots, n\} \)

Expectation

\[
E[X] = np
\]

Variance

\[
\text{Var}(X) = np(1 - p)
\]

Examples:

- # heads in \(n \) coin flips
- # of 1’s in randomly generated length \(n \) bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)
Binomial RV is sum of Bernoulli RVs

Bernoulli
- \(X \sim \text{Ber}(p) \)

Binomial
- \(Y \sim \text{Bin}(n, p) \)
- The sum of \(n \) independent Bernoulli RVs

\[
Y = \sum_{i=1}^{n} X_i, \quad X_i \sim \text{Ber}(p)
\]

\(\text{Ber}(p) = \text{Bin}(1, p) \)
Binomial Random Variable

Consider an experiment: \(n \) independent trials of \(\text{Ber}(p) \) random variables.

A Binomial random variable \(X \) is the number of successes in \(n \) trials.

<table>
<thead>
<tr>
<th>PMF</th>
<th>Expectation</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X \sim \text{Bin}(n, p))</td>
<td>(k = 0, 1, \ldots, n:)</td>
<td>(E[X] = np)</td>
</tr>
<tr>
<td>(P(X = k) = p(k) = \binom{n}{k} p^k (1-p)^{n-k})</td>
<td>(E[X] = np)</td>
<td>(\text{Var}(X) = np(1-p))</td>
</tr>
</tbody>
</table>

Range: \(\{0,1, \ldots, n\} \)

Examples:
- # heads in \(n \) coin flips
- # of 1’s in randomly generated length \(n \) bit string
- # of disk drives crashed in 1000 computer cluster (assuming disks crash independently)
Binomial Random Variable

Consider an experiment: \(n \) independent trials of \(\text{Ber}(p) \) random variables.

Definition: A **Binomial** random variable \(X \) is the number of successes in \(n \) trials.

\[
X \sim \text{Bin}(n, p)
\]

- **PMF**
 \[
P(X = k) = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]
- **Expectation**
 \[
 E[X] = np
 \]
- **Variance**
 \[
 \text{Var}(X) = np(1 - p)
 \]

Examples:
- \# heads in \(n \) coin flips
- \# of 1’s in randomly generated length \(n \) bit string
- \# of disk drives crashed in 1000 computer cluster (assuming disks crash independently)

We’ll prove this later in the course.
Exercises
Statistics: Expectation and variance

1. a. Let X = the outcome of a fair 24-sided die roll. What is $E[X]$?

b. Let Y = the sum of seven rolls of a fair 24-sided die. What is $E[Y]$?

2. Let Z = # of tails on 10 flips of a biased coin, with $p = 0.71$. What is $E[Z]$?

3. Compare the variances of $B_0 \sim \text{Ber}(0.0)$, $B_1 \sim \text{Ber}(0.1)$, $B_2 \sim \text{Ber}(0.5)$, and $B_3 \sim \text{Ber}(0.9)$.
Statistics: Expectation and variance

1. a. Let X = the outcome of a fair 24-sided die roll. What is $E[X]$?

 b. Let Y = the sum of seven rolls of a fair 24-sided die. What is $E[Y]$?

2. Let Z = # of tails on 10 flips of a biased coin, with $p = 0.71$. What is $E[Z]$?

3. Compare the variances of

 $B_0 \sim \text{Ber}(0.0)$, $B_1 \sim \text{Ber}(0.1)$, $B_2 \sim \text{Ber}(0.5)$, and $B_3 \sim \text{Ber}(0.9)$.

 If you can identify common RVs, just look up statistics instead of rederiving from scratch.
Visualizing Binomial PMFs

\[X \sim \text{Bin}(n, p) \quad p(i) = \binom{n}{k} p^k (1 - p)^{n-k} \]

\[E[X] = np \]

Match the distribution of \(X \) to the graph:

1. Bin(10,0.5)
2. Bin(10,0.3)
3. Bin(10,0.7)
4. Bin(5,0.5)
Visualizing Binomial PMFs

Match the distribution of X to the graph:

1. Bin(10,0.5)
2. Bin(10,0.3)
3. Bin(10,0.7)
4. Bin(5,0.5)
Galton Board

When a marble hits a pin, it has an equal chance of going left or right.

Let B = the **bucket index** a ball drops into. What is the **distribution** of B?

(Interpret: If B is a common random variable, report it, otherwise report PMF)
When a marble hits a pin, it has an equal chance of going left or right.

Let B = the bucket index a ball drops into. What is the distribution of B?

- Each pin is an independent trial
- One decision made for level $i = 1, 2, \ldots, 5$
- Consider a Bernoulli RV with success R_i if ball went right on level i
- Bucket index $B = \#$ times ball went right

$$B \sim \text{Bin}(n = 5, p = 0.5)$$
Galton Board

When a marble hits a pin, it has an equal chance of going left or right.

Let B = the bucket index a ball drops into. B is distributed as a Binomial RV,

$$B \sim \text{Bin}(n = 5, p = 0.5)$$

$$P(B = 0) = \binom{5}{0} 0.5^5 \approx 0.03$$

$$P(B = 1) = \binom{5}{1} 0.5^5 \approx 0.16$$

$$P(B = 2) = \binom{5}{2} 0.5^5 \approx 0.31$$

PMF of Binomial RV!
Genetics and NBA Finals

1. Each parent has 2 genes per trait (e.g., eye color).
 - Child inherits 1 gene from each parent with equal likelihood.
 - **Brown eyes** are "dominant", **blue eyes** are "recessive":
 - Child has brown eyes if either or both genes for brown eyes are inherited.
 - Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
 - Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

2. Let’s speculate that the Boston Celtics will play the Milwaukee Bucks in a 7-game series during the 2024 NBA finals.
 - The Celtics have a probability of 58% of winning each game, independently.
 - A team wins the series if they win at least 4 games (we play all 7 games).

What is P(Celtics winning)?

\[
X \sim \text{Bin}(n, p) \quad p(k) = \binom{n}{k} p^k (1 - p)^{n-k}
\]
Genetic inheritance

1. Each parent has 2 genes per trait (e.g., eye color).
 • Child inherits 1 gene from each parent with equal likelihood.
 • Brown eyes are "dominant", blue eyes are "recessive":
 • Child has brown eyes if either or both genes for brown eyes are inherited.
 • Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes)
 • Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is P(exactly 3 children have brown eyes)?

Big Q: Fixed parameter or random variable?

<table>
<thead>
<tr>
<th>Parameters</th>
<th>What is common among all outcomes of our experiment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random variable</td>
<td>What differentiates our event from the rest of the sample space?</td>
</tr>
</tbody>
</table>
Genetic inheritance

1. Each parent has 2 genes per trait (e.g., eye color).
 • Child inherits 1 gene from each parent with equal likelihood.
 • **Brown eyes** are "dominant", **blue eyes** are "recessive":
 • Child has brown eyes if either or both genes for brown eyes are inherited.
 • Child has blue eyes otherwise (i.e., child inherits two genes for blue eyes).
 • Assume parents each have 1 gene for blue eyes and 1 gene for brown eyes.

Two parents have 4 children. What is $P(\text{exactly 3 children have brown eyes})$?

1. Define events/ RVs & state goal
2. Identify known probabilities
3. Solve

X: # brown-eyed children,
$X \sim \text{Bin}(4, p)$
p: $P(\text{brown-eyed child})$

Want: $P(X = 3)$
NBA Finals

Let’s speculate: the Boston Celtics will play the Milwaukee Bucks in a 7-game series during the 2024 NBA finals.

- The Celtics have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is \(P(\text{Celtics winning}) \)?

1. Define events/ RVs & state goal

\(X \): # games Celtics win

\(X \sim \text{Bin}(7, 0.58) \)

Want:

<table>
<thead>
<tr>
<th>Big Q: Fixed parameter or random variable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td># of total games</td>
</tr>
<tr>
<td>prob Celtics winning a game</td>
</tr>
<tr>
<td>Random variable</td>
</tr>
<tr>
<td># of games Boston Celtics win</td>
</tr>
<tr>
<td>Event based on RV</td>
</tr>
</tbody>
</table>

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Winter 2024
NBA Finals

Let’s speculate: the Boston Celtics will play the Milwaukee Bucks in a 7-game series during the 2024 NBA finals.

- The Celtics have a probability of 58% of winning each game, independently.
- A team wins the series if they win at least 4 games (we play all 7 games).

What is $P(\text{Celtics winning})$?

1. Define events/ RVs & state goal

 X: # games Celtics win

 $X \sim \text{Bin}(7, 0.58)$

2. Solve

 $P(X \geq 4) = \sum_{k=4}^{7} P(X = k) = \sum_{k=4}^{7} \binom{7}{k} 0.58^k (0.42)^{7-k}$

 Cool Algebra/Probability Fact: this is identical to the probability of winning if we define winning = first to win 4 games.