21: Bayesian Statistics and Beta

Jerry Cain
February 28, 2024

Lecture Discussion on Ed
MLE: Multinomial
Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i = \# \text{ of trials with outcome } i$, where $\sum_{i=1}^{m} X_i = n$

Let’s give an example!
Okay, just one more MLE with the Multinomial

Consider a sample of \(n \) iid random variables where:

- Each element is drawn from one of \(m \) outcomes.
 \(P(\text{outcome } i) = p_i \), where \(\sum_{i=1}^{m} p_i = 1 \)
- \(X_i \) = # of trials with outcome \(i \), where \(\sum_{i=1}^{m} X_i = n \)

Example: Suppose each RV is outcome of a 6-sided die.
- Roll the dice \(n = 12 \) times.
- Observe data: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

\[
X_1 = 3, X_2 = 2, X_3 = 0, \\
X_4 = 3, X_5 = 1, X_6 = 3 \\
\text{Check: } X_1 + X_2 + \cdots + X_6 = 12
\]
Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i =$ # of trials with outcome i, where $\sum_{i=1}^{m} X_i = n$

1. What is the likelihood of observing the sample (X_1, X_2, \ldots, X_m), given the probabilities p_1, p_2, \ldots, p_m?

[A.] $\frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$

[B.] $p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}$

[C.] $\frac{n!}{X_1! X_2! \cdots X_m!} X_1^{p_1} X_2^{p_2} \cdots X_m^{p_m}$
Okay, just one more MLE with the Multinomial

Consider a sample of n iid random variables where:

- Each element is drawn from one of m outcomes. $P(\text{outcome } i) = p_i$, where $\sum_{i=1}^{m} p_i = 1$
- $X_i =$ # of trials with outcome i, where $\sum_{i=1}^{m} X_i = n$

1. What is the likelihood of observing the sample (X_1, X_2, \ldots, X_m), given the probabilities p_1, p_2, \ldots, p_m?

\[
L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m}
\]

2. What is θ_{MLE}?

\[
LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i} X_i \log(p_i), \text{ such that } \sum_{i=1}^{m} p_i = 1
\]

\[
\theta_{MLE}: \quad p_i = \frac{X_i}{n}
\]

Intuitively, probability $p_i =$ proportion of outcomes

Optimize with Lagrange multipliers in extra slides
When MLEs attack!

Consider a 6-sided die.
- Roll the dice $n = 12$ times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

What is θ_{MLE}?

MLE for Multinomial: $p_i = \frac{X_i}{n}$
When MLEs attack!

Consider a 6-sided die.
• Roll the dice \(n = 12 \) times.
• Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

\[\theta_{MLE} : \]

\[
\begin{align*}
p_1 &= \frac{3}{12} \\
p_2 &= \frac{2}{12} \\
p_3 &= 0/12 \quad \text{⚠️} \\
p_4 &= \frac{3}{12} \\
p_5 &= \frac{1}{12} \\
p_6 &= \frac{3}{12}
\end{align*}
\]

• MLE say you just never roll threes.
• Do you really believe that?

Frequentist

Roll more!
prob = frequency in limit

But what if you cannot observe anymore rolls?
Bayesian Statistics
Starting Today!

Today we are going to learn something unintuitive, beautiful, and useful!

We are going to think of probabilities as random variables.
A new definition of probability

Flip a coin \(n + m \) times, produce \(n \) heads. We don’t know the probability \(\theta \) that the coin comes up heads.

Frequentist

\(\theta \) is a single value.

\[
\theta = \lim_{n+m \to \infty} \frac{n}{n + m} \approx \frac{n}{n + m}
\]

Bayesian

\(\theta \) is a random variable.

\(\theta \)'s continuous support: \((0, 1)\)
Let’s play a game

Roll 2 dice. If **neither** roll is a 6, you win (event W). Else, I win (event W^C).

- Before you play, what’s the probability that you win?
- Play once. What’s the probability that you win?
- Play three more times. What’s the probability that you win?

\[P(W) = \left(\frac{5}{6}\right)^2 \]

Frequentist

Bayesian statistics: Constantly update your prior beliefs.

Bayesian

I am constantly re-evaluating the situation
Bayesian statistics: Probability represents our ever-evolving understanding of the world.

Mixing discrete and continuous random variables, combined with Bayes’ Theorem, allows us to reason about probabilities as random variables.
Mixing discrete and continuous

Let X be a continuous random variable, and N be a discrete random variable.

Bayes’ Theorem:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Intuition:

$$P(X = x | N = n) = \frac{P(N = n | X = x)P(X = x)}{P(N = n)}$$

$$f_{X|N}(x|n)\varepsilon_X = \frac{P(N = n | X = x)f_X(x)\varepsilon_X}{P(N = n)} \quad \Rightarrow \quad f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$
Bayes’ Theorem: All Flavors

Let X, Y be **continuous** and M, N be **discrete** random variables.

Original Bayes:

$$p_{M|N}(m|n) = \frac{p_{N|M}(n|m)p_M(m)}{p_N(n)}$$

Mix Bayes #1:

$$f_{X|N}(x|n) = \frac{p_{N|X}(n|x)f_X(x)}{p_N(n)}$$

Mix Bayes #2:

$$p_{N|X}(n|x) = \frac{f_{X|N}(x|n)p_N(n)}{f_X(x)}$$

All continuous:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$
Mixing discrete and continuous

Let θ be a random variable for the probability your coin comes up heads, and N be the number of heads you observe in an experiment.

$$f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_N(n)}$$

- **Prior** belief of parameter θ
- **Likelihood** of $N = n$ heads, given parameter $\theta = x$.
- **Posterior** updated belief of parameter θ.

normalization constant
Beta RV
Beta random variable

def A **Beta** random variable X is defined as follows:

$$X \sim \text{Beta}(a, b)$$

$a > 0, b > 0$

Support of X: $(0, 1)$

PDF

$$f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx$, normalizing constant

Expectation

$$E[X] = \frac{a}{a + b}$$

Variance

$$\text{Var}(X) = \frac{ab}{(a + b)^2 (a + b + 1)}$$
Beta RV with different a, b

$$X \sim \text{Beta}(a, b)$$

$a > 0, b > 0$

Support of X: $(0, 1)$

PDF

$$f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx$, normalizing constant

Note: PDF symmetric when $a = b$

SAT word: *adumbrate*

Beta$(1,1) = \text{Uni}(0,1)$

+ a third case (next slide)
Beta RV with different a, b

Match PDF to distribution:

A. Beta(5,5)
B. Beta(2,8)
C. Beta(8,2)

In CS109, we focus on Beta functions where a, b are both positive integers.
Beta random variable

def A **Beta** random variable X is defined as follows:

$$X \sim \text{Beta}(a, b) \quad a > 0, b > 0$$

Support of X: $(0, 1)$

PDF

$$f(x) = \frac{1}{B(a, b)} x^{a-1}(1 - x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1}(1 - x)^{b-1} dx$, normalizing constant

Expectation

$$E[X] = \frac{a}{a + b}$$

Variance

$$\text{Var}(X) = \frac{ab}{(a + b)^2(a + b + 1)}$$

Beta can be a distribution of probabilities.
Beta can be a distribution of probabilities.

Beta parameters \(a, b\) are determined by the outcome of an experiment.

But which experiment?
Flipping a coin with unknown probability
Flip a coin with unknown probability

Flip a coin $n + m$ times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) is equally likely to be any probability in $(0, 1)$.
- Let $N =$ number of heads.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe $N = n$?

What are reasonable distributions of the following?

1. θ
 - Bayesian prior $\theta \sim \text{Uni}(0, 1)$

2. $N|\theta = x$
 - Likelihood $N|\theta = x \sim \text{Bin}(n + m, x)$

3. $\theta|N = n$
 - Bayesian posterior. Use Bayes’!
Flip a coin with unknown probability

Flip a coin $n + m$ times, observe n heads.

- Before our experiment, θ (the probability that the coin comes up heads) is equally like to be any probability in $(0, 1)$.
- Let $N = \text{number of heads}$.
- Given $\theta = x$, coin flips are independent.

What is our updated belief of θ after we observe $N = n$?

Prior: $\theta \sim \text{Uni}(0,1)$

Likelihood: $N|\theta = x \sim \text{Bin}(n + m, x)$

Posterior: $f_{\theta|N}(\theta|n)$

$$f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_\theta(x)}{p_N(n)} = \frac{(n + m)x^n(1 - x)^m}{p_N(n)}$$

constant with respect to x, doesn’t depend on x
Let’s try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail

3. What is our posterior belief of the probability θ?

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1 - x)^1$$

c normalizes to valid PDF

Wait a minute! #looksbetalike
Beta RV with different a, b

$X \sim \text{Beta}(a, b)$

\[a > 0, b > 0 \]

Support of X: $(0, 1)$

PDF

\[f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1} \]

where $B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx$, normalizing constant

\[f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1 - x)^1 \]

is the PDF for Beta$(8, 2)$!

c normalizes to valid PDF

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023
Let’s try it out

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail

3. What is our posterior belief of the probability θ?

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1 - x)^1$$

c normalizes to valid PDF

Beta(8,2)
3. What is our posterior belief of the probability θ?

- Start with a $\theta \sim \text{Uni}(0,1)$ over probability
- Observe $n = 7$ successes and $m = 1$ failures
- Your new belief about the probability of θ is:

$$f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1-x)^1$$

where

$$c = \int_0^1 x^7 (1-x)^1 dx$$

Posterior belief, $\theta|N$:

- Beta($a = 8, b = 2$)

$$f_{\theta|N}(x|n) = \frac{1}{c} x^{8-1} (1-x)^{2-1}$$

- Beta($a = n + 1, b = m + 1$)
CS109 focus: Beta where \(a, b \) both positive integers

Beta parameters \(a, b \) are determined by the outcome of an experiment.

\[
\begin{align*}
 a &= \text{“successes”} + 1 \\
 b &= \text{“failures”} + 1
\end{align*}
\]

- Beta (in CS109) models the randomness of the probability of experiment success.
- Beta parameters depend on our data and our prior.
Conjugate distributions
A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail.

3. What is our posterior belief of the probability θ?

\[
f_{\theta|N}(x|n) = \frac{1}{c} x^7 (1 - x)^1
\]

c normalizes to valid PDF

Wait another minute!
Beta RV with different a, b

PDF

$$f(x) = \frac{1}{B(a, b)} x^{a-1} (1 - x)^{b-1}$$

where $B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx$, normalizing constant

Support of X: $(0, 1)$

$X \sim \text{Beta}(a, b)$

$a > 0, b > 0$

Note: PDF symmetric when $a = b$

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2023
A note about our prior

1. Start with a $\theta \sim \text{Uni}(0,1)$ over probability that a coin lands heads.

 Beta(1,1)

2. Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail

3. What is our posterior belief of the probability θ?

 Beta(8,2)

Check this out. Beta($a = 1, b = 1$):

\[
f(x) = \frac{1}{B(a, b)} x^{a-1}(1 - x)^{b-1}
\]

\[
= \frac{1}{\int_0^1 1dx}
\]

\[
= 1 \quad \text{where } 0 < x < 1
\]
Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:
- Prior and posterior parametric forms are the same

(proof on next slide)
Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:

1. If our prior belief of the parameter is Beta, and
2. Our experiment is Bernoulli, then
3. Our posterior is also Beta.

Proof: \(\theta \sim \text{Beta}(a, b) \) \(N|\theta \sim \text{Bin}(n + m, x) \)

\[
f_{\theta|N}(x|n) = \frac{p_{N|\theta}(n|x)f_{\theta}(x)}{p_{N}(n)} = \frac{(n + m)^{n}(1 - x)^{m}}{B(a,b)^{x^{a-1}(1 - x)^{b-1}}} \]

Constants that don’t depend on \(x \)

\[
= C \cdot x^{n}(1 - x)^{m} \cdot x^{a-1}(1 - x)^{b-1}
\]

\[
= C \cdot x^{n+a-1} (1 - x)^{m+b-1}
\]
Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:
- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update:

 Add number of “heads” and “tails” seen to Beta parameters.

You can **invent a prior** to express how biased you believe the coin is a priori:
- $\theta \sim \text{Beta}(a, b)$: pretend you’ve conducted $(a + b - 2)$ **imaginary trials**, where $(a - 1)$ trials produced a head and $(b - 1)$ produced a tail
- Choosing Beta(1, 1) = Uni(0, 1) means you don’t hold any prior beliefs

<table>
<thead>
<tr>
<th>Prior</th>
<th>Beta($a = n_{imag} + 1, b = m_{imag} + 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Observe n successes and m failures</td>
</tr>
<tr>
<td>Posterior</td>
<td>Beta($a = n_{imag} + n + 1, b = m_{imag} + m + 1$)</td>
</tr>
</tbody>
</table>
Medicinal Beta

• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let \(p \) be the probability your drug works.

\[
p \approx \frac{14}{20} = 0.7
\]

Bayesian

A frequentist view will not incorporate prior/expert belief about probability.
Medicinal Beta

• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Frequentist

Let p be the probability your drug works.

\[
p \approx \frac{14}{20} = 0.7
\]

Bayesian

Let θ be the probability your drug works.

θ is a random variable.
Medicinal Beta

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

What is the prior distribution of θ? (select all that apply)

A. $\theta \sim Beta(1, 1) = Uni(0, 1)$
B. $\theta \sim Beta(81, 101)$
C. $\theta \sim Beta(80, 20)$
D. $\theta \sim Beta(81, 21)$
E. $\theta \sim Beta(5, 2)$

Prior $Beta(a = n_{imag} + 1, b = m_{imag} + 1)$
Posterior $Beta(a = n_{imag} + n + 1, b = m_{imag} + m + 1)$
Medicinal Beta

• Before being tested, a medicine is believed to "work" 80% of the time.
• The medicine is administered to 20 patients.
• It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

(Bayesian interpretation)

What is the prior distribution of θ? (select all that apply)

A. $\theta \sim \text{Beta}(1, 1) = \text{Uni}(0, 1)$
B. $\theta \sim \text{Beta}(81, 101)$
C. $\theta \sim \text{Beta}(80, 20)$
D. $\theta \sim \text{Beta}(81, 21)$
 Interpretation: 80 successes / 100 imaginary trials
E. $\theta \sim \text{Beta}(5, 2)$
 (you can choose either based on how strongly you believe in prior data.
We choose E on next slide)
Medicinal Beta

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Prior: \(\theta \sim \text{Beta}(a = 5, b = 2) \)

Posterior: \(\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6) \)

\(\sim \text{Beta}(a = 19, b = 8) \)

(Bayesian interpretation)
Medicinal Beta

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Prior: \(\theta \sim \text{Beta}(a = 5, b = 2) \)
Posterior: \(\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6) \)
\(\sim \text{Beta}(a = 19, b = 8) \)

What do you report to pharmacists?
A. Expectation of posterior
B. Mode of posterior
C. Distribution of posterior
D. Nothing
Medicinal Beta

- Before being tested, a medicine is believed to "work" 80% of the time.
- The medicine is administered to 20 patients.
- It "works" for 14, "doesn’t work" for 6.

What is your new belief that the drug "works"?

Prior: \(\theta \sim \text{Beta}(a = 5, b = 2) \)

Posterior: \(\theta \sim \text{Beta}(a = 5 + 14, b = 2 + 6) \approx \text{Beta}(a = 19, b = 8) \)

What do you report to pharmacists?

\[
E[\theta] = \frac{a}{a+b} = \frac{19}{19+8} \approx 0.70
\]

\[
\text{mode}(\theta) = \frac{a-1}{a+b-2} = \frac{18}{18+7} \approx 0.72
\]

In CS109, we report the **mode**: The “most likely” parameter given the data.
In this lecture: If nothing is known about the parameter p, Bayesian statisticians will:
- Treat the parameter as a random variable θ with a Beta prior distribution
- Conduct experiments
- Based on the outcomes of those experiments, update the posterior distribution of θ

Food for thought:
Any parameter for a “parameterized” random variable can be thought of as a random variable. $Y \sim \mathcal{N}(\mu, \sigma^2)$
Estimating our parameter directly

(our focus so far)

Maximum Likelihood Estimator (MLE)

What is the parameter θ that maximizes the likelihood of our observed data (x_1, x_2, \ldots, x_n)?

$$L(\theta) = f(X_1, X_2, \ldots, X_n|\theta) = \prod_{i=1}^{n} f(X_i|\theta)$$

$$\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, \ldots, X_n|\theta)$$

Observations:

- MLE maximizes probability of observing data given a parameter θ. It’s fitting the curve to match the data.
- If we are estimating θ, shouldn’t we maximize the probability of θ directly? SAT word: *adumbrate*
Extra: MLE: Multinomial derivation
Okay, just one more MLE with the Multinomial

Consider a sample of n i.i.d. random variables where

- Each element is drawn from one of m outcomes.
 \[P(\text{outcome } i) = p_i, \text{ where } \sum_{i=1}^{m} p_i = 1 \]
- $X_i = \# \text{ of trials with outcome } i$, where $\sum_{i=1}^{m} X_i = n$

1. What is the likelihood of observing
 the sample (X_1, X_2, \ldots, X_m), given the probabilities p_1, p_2, \ldots, p_m?

 \[L(\theta) = \frac{n!}{X_1! X_2! \cdots X_m!} p_1^{X_1} p_2^{X_2} \cdots p_m^{X_m} \]

2. What is θ_{MLE}?

 \[LL(\theta) = \log(n!) - \sum_{i=1}^{m} \log(X_i!) + \sum_{i=1}^{m} X_i \log(p_i), \text{ such that } \sum_{i=1}^{m} p_i = 1 \]

 \[\theta_{\text{MLE}}: \quad p_i = \frac{X_i}{n} \quad \text{Intuitively, probability } p_i = \text{ proportion of outcomes} \]
Optimizing MLE for Multinomial

\[\theta = (p_1, p_2, \ldots, p_m) \]

\[\theta_{MLE} = \arg \max_{\theta} LL(\theta), \text{ where } \sum_{i=1}^{m} p_i = 1 \]

Use Lagrange multipliers to account for constraint

Lagrange multipliers: \[A(\theta) = LL(\theta) + \lambda \left(\sum_{i=1}^{m} p_i - 1 \right) = \sum_{i=1}^{m} X_i \log(p_i) + \lambda \left(\sum_{i=1}^{m} p_i - 1 \right) \] (drop non-\(p_i\) terms)

Differentiate w.r.t. each \(p_i\), in turn:

\[\frac{\partial A(\theta)}{\partial p_i} = X_i \frac{1}{p_i} + \lambda = 0 \Rightarrow p_i = -\frac{X_i}{\lambda} \]

Solve for \(\lambda\), noting \[\sum_{i=1}^{m} X_i = n, \sum_{i=1}^{m} p_i = 1: \]

\[\sum_{i=1}^{m} p_i = \sum_{i=1}^{m} -\frac{X_i}{\lambda} = 1 \Rightarrow 1 = -\frac{n}{\lambda} \Rightarrow \lambda = -n \]

Substitute \(\lambda\) into \(p_i\)

\[p_i = \frac{X_i}{n} \]