05: Independence

Jerry Cain
April 10th, 2024

Lecture Discussion on Ed
Independence I
Independence

Two events E and F are defined as independent if:

$$P(EF) = P(E)P(F)$$

Otherwise E and F are called dependent events.

If E and F are independent, then:

$$P(E|F) = P(E)$$
Statement:

If E and F are independent, then $P(E|F) = P(E)$.

Proof:

$$P(E|F) = \frac{P(EF)}{P(F)}$$

Definition of conditional probability

$$= \frac{P(E)P(F)}{P(F)}$$

Independence of E and F

$$= P(E)$$

Taking the bus to cancellation city

Knowing that F happened does not change our belief that E happened.
Dice, our misunderstood friends

- Roll two 6-sided dice, yielding values D_1 and D_2.
- Let event E: $D_1 = 1$
 event F: $D_2 = 6$
 event G: $D_1 + D_2 = 5$

1. Are E and F independent?

 $P(E) = 1/6$
 $P(F) = 1/6$
 $P(EF) = 1/36$

 $P(E)P(F) = 1/36$

 Yes! independent

2. Are E and G independent?

 $P(E) = 1/6$
 $P(G) = 4/36 = 1/9$
 $P(EG) = 1/36 \neq P(E)P(G)$

 No! dependent

$G = \{(1,4), (2,3), (3,2), (4,1)\}$
$|G| = 4$
Generalizing independence

Three events E, F, and G are independent if:

\[
\begin{align*}
P(EFG) &= P(E)P(F)P(G), \\
P(EF) &= P(E)P(F), \\
P(EG) &= P(E)P(G), \\
P(FG) &= P(F)P(G)
\end{align*}
\]

for $r = 1, \ldots, n$:

for every subset E_1, E_2, \ldots, E_r:

\[
P(E_1E_2\ldots E_r) = P(E_1)P(E_2)\ldots P(E_r)
\]
Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an **independent trial**.
- Two rolls: D_1 and D_2.
- Let event E: $D_1 = 1$
 - event F: $D_2 = 6$
 - event G: $D_1 + D_2 = 7$

$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

1. Are E and F independent? ✔
2. Are E and G independent?
3. Are F and G independent?
4. Are E, F, G independent?

$P(EF) = 1/36$
Dice, increasingly misunderstood (still our friends)

- Each roll of a 6-sided die is an independent trial.
- Two rolls: D_1 and D_2.
- Let event E: $D_1 = 1$
- event F: $D_2 = 6$
- event G: $D_1 + D_2 = 7$

$G = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$

1. Are E and F independent?

2. Are E and G independent?

3. Are F and G independent?

4. Are E, F, G independent?

$P(EF) = 1/36$

Pairwise independence is not sufficient to prove independence of 3 or more events!
Independence II
Independent trials

We often are interested in experiments consisting of \(n \) independent trials.

- \(n \) trials, each with the same set of possible outcomes
- \(n \)-way independence: an event in one subset of trials is independent of events in other subsets of trials

Examples:
- Flip a coin \(n \) times
- Roll a die \(n \) times
- Send a multiple-choice survey to \(n \) people
- Send \(n \) web requests to \(k \) different servers
Network reliability

Consider the following parallel network:
• \(n \) independent routers, each with probability \(p_i \) of functioning (where \(1 \leq i \leq n \))
• \(E \) = functional path from A to B exists.

What is \(P(E) \)?
Network reliability

Consider the following parallel network:

- \(n \) independent routers, each with probability \(p_i \) of functioning (where \(1 \leq i \leq n \))
- \(E = \) functional path from A to B exists.

What is \(P(E) \)?

\[
P(E) = P(\geq 1 \text{ one router works})
\]

\[
= 1 - P(\text{all routers fail})
= 1 - (1 - p_1)(1 - p_2) \cdots (1 - p_n)
= 1 - \prod_{i=1}^{n}(1 - p_i)
\]
Exercises
Independence?

1. True or False? Two events E and F are independent if:
 A. Knowing that F happens means that E can’t happen.
 B. Knowing that F happens doesn’t change probability that E happened.

2. Are E and F independent in the following pictures?

 A. ![Diagram A]
 B. ![Diagram B]
Independence?

1. True or False? Two events \(E \) and \(F \) are independent if:
 A. Knowing that \(F \) happens means that \(E \) can’t happen.
 B. Knowing that \(F \) happens doesn’t change probability that \(E \) happened.

2. Are \(E \) and \(F \) independent in the following pictures?
 A.
 \[
 \begin{array}{c|c}
 & E & \\
 F & 1/4 & 1/4 \\
 \hline
 S & 1/4 & \\
 \end{array}
 \]
 \(\text{EF} = \emptyset \)
 \(P(E) = 1/4 \)
 \(P(F) = 1/4 \)
 \(P(E)P(F) = 1/16 \neq 0 \)
 B.
 \[
 \begin{array}{c|c|c}
 & E & \\
 F & \frac{2}{9} & \frac{4}{9} \\
 \hline
 S & \frac{2}{9} & \frac{4}{9} \\
 \end{array}
 \]
 \(\text{EF} = \emptyset \)
 \(P(E) = \frac{2}{9} + \frac{4}{9} = \frac{6}{9} = \frac{2}{3} \)
 \(P(F) = \frac{2}{9} + \frac{1}{9} = \frac{3}{9} = \frac{1}{3} \)
 \(P(E)P(F) = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9} \)
Coin Flips

Suppose we flip a coin n times. Each coin flip is an independent trial with probability p of coming up heads. Write an expression for the following:

1. $P(n \text{ heads on } n \text{ coin flips})$
2. $P(n \text{ tails on } n \text{ coin flips})$
3. $P(\text{first } k \text{ heads, then } n - k \text{ tails})$
4. $P(\text{exactly } k \text{ heads on } n \text{ coin flips})$
Coin Flips

Suppose we flip a coin n times. Each coin flip is an **independent trial** with probability p of coming up heads. Write an expression for the following:

1. $P(n \text{ heads on } n \text{ coin flips})$
2. $P(n \text{ tails on } n \text{ coin flips})$
3. $P(\text{first } k \text{ heads, then } n-k \text{ tails})$
4. $P(\text{exactly } k \text{ heads on } n \text{ coin flips})$

\[
\binom{n}{k} p^k (1-p)^{n-k}
\]

of mutually exclusive outcomes

$P(\text{a particular outcome's } k \text{ heads on } n \text{ coin flips})$

Make sure you understand #4! It will come up again.
Probability of events

E or F
\[P(E \cup F) \]

Just add!
\[P(E) + P(F) \]

Mutually exclusive?

Inclusion-Exclusion Principle
\[P(E) + P(F) - P(E \cap F) \]

E and F
\[P(EF) \]

Just multiply!

Independent?

Just add!

Chain Rule
Probability of events

E or F
\[P(E \cup F) \]

Mutually exclusive?

Just add!
\[P(E) + P(F) \]

Inclusion-Exclusion Principle
\[P(E) + P(F) - P(E \cap F) \]

E and F
\[P(EF) \]

Independent?

Just multiply!
\[P(E)P(F) \]

Just add!
\[P(E) + P(F) \]

Inclusion-Exclusion Principle
\[P(E) + P(F) - P(E \cap F) \]

Just multiply!
\[P(E)P(F) \]

Chain Rule
\[P(E)P(F|E) \]

or
\[P(F)P(E|F) \]
Probability of events

- **E or F**
 - $P(E \cup F)$
- **E and F**
 - $P(EF)$

Mutually exclusive?
- Just add!
Independent?
- Just multiply!

- **Inclusion-Exclusion Principle**
- **De Morgan’s**
- **Chain Rule**
De Morgan’s Laws

\[(E \cap F)^c = E^c \cup F^c\]

In probability:
\[P(E_1E_2 \cdots E_n) = 1 - P((E_1E_2 \cdots E_n)^c)\]
Great if \(E_i^c\) mutually exclusive!

\[(E \cup F)^c = E^c \cap F^c\]

In probability:
\[P(E_1 \cup E_2 \cup \cdots \cup E_n) = 1 - P((E_1 \cup E_2 \cup \cdots \cup E_n)^c)\]
Great if \(E_i\) independent!
Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if

1. $E =$ bucket 1 has ≥ 1 string hashed into it?

2. $E =$ at least 1 of buckets 1 to k has ≥ 1 string hashed into it?
Hash table fun

- m strings are hashed (not uniformly) into a hash table with n buckets. $\sum_{i=1}^{n} p_i = 1$
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if

1. $E = \text{bucket 1 has } \geq 1 \text{ string hashed into it}$?

Define

- $S_i = \text{string } i \text{ is hashed into bucket 1}$
- $S_i^C = \text{string } i \text{ is not hashed into bucket 1}$

$$P(S_i) = p_1$$
$$P(S_i^C) = 1 - p_1$$
Hash table fun

- \(m \) strings are hashed (not uniformly) into a hash table with \(n \) buckets.
- Each string hashed is an independent trial w.p. \(p_i \) of getting hashed into bucket \(i \).

What is \(P(E) \) if

1. \(E = \) bucket 1 has \(\geq 1 \) string hashed into it?

WTF (not-real acronym for Want To Find):

\[
P(E) = P(S_1 \cup S_2 \cup \cdots \cup S_m) \\
= 1 - P\left((S_1 \cup S_2 \cup \cdots \cup S_m)^c\right) \\
= 1 - P\left(S_1^c S_2^c \cdots S_m^c\right) \\
= 1 - P(S_1^c)P(S_2^c)\cdots P(S_m^c) = 1 - \left(P(S_1^c)\right)^m \\
= 1 - (1 - p_1)^m
\]

Define \(S_i = \) string \(i \) is hashed into bucket 1
\(S_i^c = \) string \(i \) is not hashed into bucket 1

\[
P(S_i) = p_1 \quad P(S_i^c) = 1 - p_1
\]

\(S_i \) independent trials
More hash table fun: Possible approach?

- m strings are hashed (not uniformly) into a hash table with n buckets.
- Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if
1. $E = \text{bucket 1 has } \geq 1 \text{ string hashed into it}$?
2. $E = \text{at least 1 of buckets 1 to } k \text{ has } \geq 1 \text{ string hashed into it}$?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$
$$= 1 - P\left((F_1 \cup F_2 \cup \cdots \cup F_k)^c\right)$$
$$= 1 - P(F_1^c F_2^c \cdots F_k^c)$$

$?? = 1 - P(F_1^c)P(F_2^c)\cdots P(F_k^c)$

⚠ F_i bucket events are dependent!

So we cannot approach with complement.
More hash table fun

• m strings are hashed (not uniformly) into a hash table with n buckets.
• Each string hashed is an independent trial w.p. p_i of getting hashed into bucket i.

What is $P(E)$ if
1. $E = \text{bucket 1 has } \geq 1 \text{ string hashed into it}$?
2. $E = \text{at least 1 of buckets 1 to } k \text{ has } \geq 1 \text{ string hashed into it}$?

$$P(E) = P(F_1 \cup F_2 \cup \cdots \cup F_k)$$
$$= 1 - P((F_1 \cup F_2 \cup \cdots \cup F_k)^C)$$
$$= 1 - P(F_1^C F_2^C \cdots F_k^C)$$

Define $F_i = \text{bucket } i \text{ has at least one string in it}$

$$= P(\text{buckets 1 to } k \text{ all denied strings})$$
$$= (P(\text{each string hashes to } k + 1 \text{ or higher}))^m$$
$$= (1 - p_1 - p_2 - \cdots - p_k)^m$$

$$= 1 - (1 - p_1 - p_2 - \cdots - p_k)^m$$