06: Random Variables

Jerry Cain
April 12th, 2024

Lecture Discussion on Ed
Conditional Independence
Conditional Paradigm

For any events A, B, and E, you can condition consistently on E, and all formulas still hold:

Axiom 1

\[0 \leq P(A|E) \leq 1 \]

Corollary 1 (complement)

\[P(A|E) = 1 - P(A^c|E) \]

Transitivity

\[P(AB|E) = P(BA|E) \]

Chain Rule

\[P(AB|E) = P(B|E)P(A|BE) \]

Bayes’ Theorem

\[P(A|BE) = \frac{P(B|AE)P(A|E)}{P(B|E)} \]

BAE’s theorem?
Conditional Independence

Two events A and B are defined as **conditionally independent given E** if:

$$P(AB|E) = P(A|E)P(B|E)$$

An equivalent definition:

A. $P(A|B) = P(A)$
B. $P(A|BE) = P(A)$
C. $P(A|BE) = P(A|E)$
Conditional Independence

Two events A and B are defined as **conditionally independent given E** if:

$$P(AB|E) = P(A|E)P(B|E)$$

An equivalent definition:

A. $P(A|B) = P(A)$

B. $P(A|BE) = P(A)$

C. $P(A|BE) = P(A|E)$

E is the "new sample space", so left and right side must both be conditioned on E.
Netflix and Condition

Let $E =$ a user watches Life is Beautiful.
Let $F =$ a user watches Amelie.
What is $P(E)$?

$$P(E) \approx \frac{\# \text{ people who have watched movie}}{\# \text{ people on Netflix}} = \frac{10,234,231}{50,923,123} \approx 0.20$$

What is the probability that a user watches Life is Beautiful, given they watched Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\# \text{ people who have watched both}}{\# \text{ people who have watched Amelie}} \approx 0.42$$
Netflix and Condition

Let E be the event that a user watches the given movie. Let F be the event that the same user watches Amelie.

$P(E) = 0.19$
$P(E) = 0.32$
$P(E) = 0.20$
$P(E) = 0.09$
$P(E) = 0.20$

$P(E|F) = 0.14$
$P(E|F) = 0.35$
$P(E|F) = 0.20$
$P(E|F) = 0.72$
$P(E|F) = 0.42$

Independent!
Netflix and Condition (on many movies)

Watched: E_1, E_2, E_3, E_4

What if $E_1E_2E_3E_4$ are not independent? (e.g., all international emotional comedies)

$$P(E_4|E_1E_2E_3) = \frac{P(E_1E_2E_3E_4)}{P(E_1E_2E_3)} = \frac{\# \text{ people who have watched all 4}}{\# \text{ people who have watched those 3}}$$

We need to keep track of an exponential number of movie-watching statistics

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Netflix and Condition (on many movies)

Assume: $E_1 E_2 E_3 E_4$ are conditionally independent given K

$P(E_4 | E_1 E_2 E_3) = \frac{P(E_1 E_2 E_3 E_4)}{P(E_1 E_2 E_3)}$

An easier probability to store and compute!

$P(E_4 | E_1 E_2 E_3 K) = P(E_4 | K)$
Dependent events can be conditionally independent.

(And vice versa: Independent events can be conditionally dependent.)

Challenge: How do we determine K? Stay tuned in 6 weeks’ time!
Random Variables
Random variables are like typed variables

int \(a = 5; \)

- **type**: int
- **name**: \(a \)
- **value**: 5

double \(b = 4.2; \)

- **type**: double
- **name**: \(b \)
- **value**: 4.2

bit \(c = 1; \)

- **type**: bit
- **name**: \(c \)
- **value**: 1

\(A \) is the number of Pokemon we bring to our future battle.
\[A \in \{1, 2, ..., 6\} \]

\(B \) is the amount of money we get after we win a battle.
\[B \in \mathbb{R}^+ \]

\(C \) is 1 if we successfully beat the Elite Four. 0 otherwise.
\[C \in \{0,1\} \]
Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

1. What is the value of X for the outcomes:
 - (T,T,T)?
 - (H,H,T)?

2. What is the event (set of outcomes) where $X = 2$?

3. What is $P(X = 2)$?
Random Variable

A random variable is a real-valued function defined on a sample space.

Example:

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

1. What is the value of X for the outcomes:
 - (T,T,T)?
 - (H,H,T)?

2. What is the event (set of outcomes) where $X = 2$?

3. What is $P(X = 2)$?
Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- **Random variables ≠ events.**
- We can define an event to be a particular assignment of a random variable, or more generally, in terms of a random variable.

Example:

3 coins are flipped. Let $X = \#$ of heads. X is a **random variable**.

$X = 2$ event $P(X = 2)$ probability (number b/t 0 and 1)
Random variables are **NOT** events!

It is confusing that random variables and events use the same notation.

- **Random variables ≠ events.**
- We can define an event to be a particular assignment of a random variable, or more generally, in terms of a random variable.

Example:

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>Set of outcomes</th>
<th>$P(X = k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>${(T, T, T)}$</td>
<td>$1/8$</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>${(H, T, T), (T, H, T), (T, T, H)}$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>${(H, H, T), (H, T, H), (T, H, H)}$</td>
<td>$3/8$</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>${(H, H, H)}$</td>
<td>$1/8$</td>
</tr>
<tr>
<td>$X \geq 4$</td>
<td>${}$</td>
<td>0</td>
</tr>
</tbody>
</table>

3 coins are flipped. Let $X =$ # of heads. X is a random variable.
PMF/CDF
So far

3 coins are flipped. Let $X = \# \text{ of heads}$. X is a random variable.

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>$P(X = k)$</th>
<th>Set of outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 0$</td>
<td>$1/8$</td>
<td>${(T, T, T)}$</td>
</tr>
<tr>
<td>$X = 1$</td>
<td>$3/8$</td>
<td>${(H, T, T), (T, H, T), (T, T, H)}$</td>
</tr>
<tr>
<td>$X = 2$</td>
<td>$3/8$</td>
<td>${(H, H, T), (H, T, H), (T, H, H)}$</td>
</tr>
<tr>
<td>$X = 3$</td>
<td>$1/8$</td>
<td>${(H, H, H)}$</td>
</tr>
<tr>
<td>$X \geq 4$</td>
<td>0</td>
<td>${}$</td>
</tr>
</tbody>
</table>

Can we get a "shorthand" for this last step? Seems like it might be useful!
Probability Mass Function

3 coins are flipped. Let $X = \#$ of heads. X is a random variable.

A function on k
with range $[0,1]$

$P(X = k)$

What would be a *useful* function to define?
The probability of the event that a random variable X takes on the value k! For *discrete random variables*, this is a *probability mass function*.

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Probability Mass Function

3 coins are flipped. Let \(X = \# \) of heads. \(X \) is a random variable.

- **parameter/input** \(k \): a value of \(X
- **return value/output**: probability of the event \(X = 2 \)

A function on \(k \) with range \([0,1]\)

probability mass function

```python
def prob_x(n, k, p):
    n_ways = math.comb(n, k)
    p_way = p ** k * (1 - p) ** (n - k)
    return n_ways * p_way
```
Discrete RVs and Probability Mass Functions

A random variable X is **discrete** if it can take on countably many values.

- $X = x$, where $x \in \{x_1, x_2, x_3, \ldots\}$

The **probability mass function** (PMF) of a discrete random variable is

$$ P(X = x) = p(x) = p_X(x) $$

shorthand notation

- Probabilities must sum to 1:

$$ \sum_{i=1}^{\infty} p(x_i) = 1 $$

This last point is a good way to verify any PMF you create is valid.
Let X be a random variable that represents the result of a single dice roll.

- **Support** of X : $\{1, 2, 3, 4, 5, 6\}$
- Therefore, X is a discrete random variable.
- **PMF of X:**

 $p(x) = \begin{cases}
 1/6 & x \in \{1, \ldots, 6\} \\
 0 & \text{otherwise}
 \end{cases}$
Cumulative Distribution Functions

For a random variable X, the cumulative distribution function (CDF) is defined as

$$F(a) = F_X(a) = P(X \leq a), \text{ where } -\infty < a < \infty$$

For a discrete RV X, the CDF is:

$$F(a) = P(X \leq a) = \sum_{\text{all } x \leq a} p(x)$$
CDFs as graphs

Let X be a random variable that represents the result of a single dice roll.

CDF (cumulative distribution function) $F(a) = P(X \leq a)$

PMF of X

<table>
<thead>
<tr>
<th>$X = x$</th>
<th>$P(X = x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>3</td>
<td>1/6</td>
</tr>
<tr>
<td>4</td>
<td>1/6</td>
</tr>
<tr>
<td>5</td>
<td>1/6</td>
</tr>
<tr>
<td>6</td>
<td>1/6</td>
</tr>
</tbody>
</table>

CDF of X

$P(X \leq 0) = 0$

$P(X \leq 6) = 1$
Expectation
Discrete random variables

Definition

Properties

Experiment outcomes

PMF
\[P(X = x) = p(x) \]

CDF \(F(x) \)

Discrete Random Variable, \(X \)

Without performing the experiment:

- The support tells us which values our random variable might produce
- Next up: How do we report the "average" value?
Expectation

The expectation of a discrete random variable X is defined as:

$$E[X] = \sum_{x: p(x) > 0} p(x) \cdot x$$

• Note: sum over all values of $X = x$ that have non-zero probability.

• Other names: mean, expected value, weighted average, center of mass, first moment
Expectation of a die roll

What is the expected value of a 6-sided die roll?

1. Define random variables
 \[X = \text{RV for value of roll} \]
 \[P(X = x) = \begin{cases}
 1/6 & x \in \{1, \ldots, 6\} \\
 0 & \text{otherwise}
\end{cases} \]

2. Solve
 \[E[X] = 1 \left(\frac{1}{6} \right) + 2 \left(\frac{1}{6} \right) + 3 \left(\frac{1}{6} \right) + 4 \left(\frac{1}{6} \right) + 5 \left(\frac{1}{6} \right) + 6 \left(\frac{1}{6} \right) = \frac{7}{2} \]
Important properties of expectation

1. Linearity:
 \[E[aX + b] = aE[X] + b \]

 - Let \(X \) = 6-sided dice roll,
 \(Y = 2X - 1 \).
 - \(E[X] = 3.5 \)
 - \(E[Y] = 6 \)

2. Expectation of a sum = sum of expectation:
 \[E[X + Y] = E[X] + E[Y] \]

 Sum of two dice rolls:
 - Let \(X \) = roll of die 1
 \(Y = \) roll of die 2
 - \(E[X + Y] = 3.5 + 3.5 = 7 \)

3. Unconscious statistician:
 \[E[g(X)] = \sum_x g(x)p(x) \]

These properties let you avoid defining difficult PMFs.
Linearity of Expectation proof

\[E[aX + b] = aE[X] + b \]

Proof:

\[
E[aX + b] = \sum_x (ax + b)p(x) = \sum_x axp(x) + bp(x) \\
= a \sum_x xp(x) + b \sum_x p(x) \\
= a E[X] + b \cdot 1
\]
Expectation of Sum intuition

\[E[X + Y] = E[X] + E[Y] \]

we’ll prove this in a few lectures

<table>
<thead>
<tr>
<th>Intuition for now:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>X + Y</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

Average:

\[\frac{1}{n} \sum_{i=1}^{n} x_i + \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{n} \sum_{i=1}^{n} (x_i + y_i) \]

\[\frac{1}{7} (28) + \frac{1}{7} (56) = \frac{1}{7} (84) \]
LOTUS proof

Let $Y = g(X)$, where g is a real-valued function.

$$E[g(X)] = E[Y] = \sum_j y_j p(y_j)$$

$$= \sum_j y_j \sum_{i: g(x_i) = y_j} p(x_i)$$

$$= \sum_j \sum_{i: g(x_i) = y_j} y_j p(x_i)$$

$$= \sum_j \sum_{i: g(x_i) = y_j} g(x_i) p(x_i)$$

$$= \sum g(x_i) p(x_i)$$

For you to review so that you can sleep tonight!
Exercises
A Whole New World with Random Variables

Event-driven probability

- Relate only binary events
 - Either something happens (E)
 - or it doesn’t happen (E^C)

- Can only report probability

- Lots of combinatorics

Random Variables

- Link multiple similar events together ($X = 1, X = 2, \ldots, X = 6$)

- Can compute statistics: report the "average" outcome

- Once we have the PMF (for discrete RVs), we can do regular math
Example random variable

Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. Let Y = # of heads on 5 flips.

1. What is the support of Y? In other words, what are the values that Y can take on with non-zero probability?

2. Define the event $Y = 2$. What is $P(Y = 2)$?

3. What is the PMF of Y? In other words, what is $P(Y = k)$, for k in the support of Y?
Consider 5 flips of a coin which comes up heads with probability p. Each coin flip is an independent trial. **Let $Y = \# \text{ of heads on 5 flips}$.**

1. What is the **support** of Y? In other words, what are the values that Y can take on with non-zero probability? $\{0, 1, 2, 3, 4, 5\}$

2. Define the event $Y = 2$. What is $P(Y = 2)$?

 $P(Y = 2) = \binom{5}{2} p^2 (1 - p)^3$

3. What is the **PMF** of Y? In other words, what is $P(Y = k)$, for k in the support of Y?

 $P(Y = k) = \binom{5}{k} p^k (1 - p)^{5-k}$
Lying with statistics

A school has 3 classes with 5, 10, and 150 students. What is the average class size?

1. Interpretation #1
 • Randomly choose a class with equal probability.
 • \(X = \text{size of chosen class} \)
 \[
 E[X] = 5 \left(\frac{1}{3} \right) + 10 \left(\frac{1}{3} \right) + 150 \left(\frac{1}{3} \right)
 \]
 \[
 = \frac{165}{3} = 55
 \]

2. Interpretation #2
 • Randomly choose a student with equal probability.
 • \(Y = \text{size of chosen class} \)
 \[
 E[Y] = 5 \left(\frac{5}{165} \right) + 10 \left(\frac{10}{165} \right) + 150 \left(\frac{150}{165} \right)
 \]
 \[
 = \frac{22635}{165} \approx 137
 \]

What alumni relations usually reports

Average student perception of class size
Being a statistician unconsciously

Let X be a discrete random variable.

- $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let $Y = |X|$. What is $E[Y]$?

A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$

B. $E[Y] = E[0] = 0$

C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$

D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} \cdot |1| = \frac{2}{3}$

E. C and D
Being a statistician unconsciously

Let X be a discrete random variable.

- $P(X = x) = \frac{1}{3}$ for $x \in \{-1, 0, 1\}$

Let $Y = |X|$. What is $E[Y]$?

A. $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot -1 = 0$ \hspace{1cm} \times \hspace{1cm} E[X]

B. $E[Y] = E[0] = 0$ \hspace{1cm} \times \hspace{1cm} E[E[X]]

C. $\frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$

D. $\frac{1}{3} \cdot |-1| + \frac{1}{3} \cdot |0| + \frac{1}{3} |1| = \frac{2}{3}$

E. C and D

1. Find PMF of Y: $p_Y(0) = \frac{1}{3}, p_Y(1) = \frac{2}{3}$
2. Compute $E[Y]$

Use LOTUS by using PMF of X:

1. $P(X = x) \cdot |x|$
2. Sum up