13: Statistics on Multiple Random Variables

Jerry Cain
April 29th, 2024

Lecture Discussion on Ed
Coupon Collecting
Coupon collecting and server requests

The **coupon collector’s problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons.
- For each box you buy, you "collect" a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?

What is the expected number of servers utilized after n requests?

* 52% of Amazon profits
** more profitable than Amazon’s North America commerce operations

source

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.

• Requests independently go to server i with probability p_i
• Let $X = \#$ servers that receive ≥ 1 request.

What is $E[X]$?
Computer cluster utilization

Consider a computer cluster with k servers. We send n requests.
- Requests independently go to server i with probability p_i
- Let $X = \#$ servers that receive ≥ 1 request.

What is $E[X]$?

1. Define additional random variables.
 Let: $A_i =$ event that server i receives ≥ 1 request
 $X_i =$ indicator for A_i

 \[
P(A_i) = 1 - P(\text{no requests to } i) = 1 - (1 - p_i)^n\]

 Note: A_i are dependent!

2. Solve.
 \[
 E[X_i] = P(A_i) = 1 - (1 - p_i)^n
 \]
 \[
 E[X] = E\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} E[X_i] = \sum_{i=1}^{k} (1 - (1 - p_i)^n)
 \]
 \[
 = \sum_{i=1}^{k} 1 - \sum_{i=1}^{k} (1 - p_i)^n = k - \sum_{i=1}^{k} (1 - p_i)^n
 \]
The **coupon collector's problem** in probability theory:

- You buy boxes of cereal.
- There are k different types of coupons
- For each box you buy, you "collect" a coupon of type i.

1. How many coupons do you expect after buying n boxes of cereal?
2. How many boxes do you expect to buy until you have one of each coupon?

What is the expected number of utilized servers after n requests?

What is the expected number of strings to hash until each bucket has ≥ 1 string?
Hash Tables

Consider a hash table with k buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let $Y = \# \text{strings to hash until each bucket} \geq 1 \text{ string}$.

What is $E[Y]$?

1. Define additional random variables. How should we define Y_i such that $Y = \sum_i Y_i$?

2. Solve.
Hash Tables

Consider a hash table with \(k \) buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let \(Y = \# \) strings to hash until each bucket \(\geq 1 \) string.

What is \(E[Y] \)?

1. Define additional random variables.
 - Let: \(Y_i = \# \) of trials needed to get success after \(i \)-th success
 - Success: hash string to previously empty bucket
 - If \(i \) non-empty buckets: \(P(\text{success}) = \frac{k-i}{k} \)

2. Solve.

\[
P(Y_i = n) = \left(\frac{i}{k}\right)^{n-1} \left(\frac{k-i}{k}\right)
\]

Equivalently, \(Y_i \sim \text{Geo} \left(p = \frac{k-i}{k} \right) \)

\[
E[Y_i] = \frac{1}{p} = \frac{k}{k-i}
\]
Hash Tables

Consider a hash table with \(k \) buckets.
- Strings are equally likely to get hashed into any bucket (independently).
- Let \(Y = \# \) strings to hash until each bucket \(\geq 1 \) string.

What is \(E[Y] \)?

1. Define additional random variables.
 Let: \(Y_i = \# \) of trials to needed get success after \(i \)-th success
 \[Y_i \sim \text{Geo} \left(p = \frac{k - i}{k} \right), \quad E[Y_i] = \frac{1}{p} = \frac{k}{k - i} \]

2. Solve.
 \[Y = Y_0 + Y_1 + \cdots + Y_{k-1} \]
 \[E[Y] = E[Y_0] + E[Y_1] + \cdots + E[Y_{k-1}] \]
 \[= \frac{k}{k} + \frac{k}{k - 1} + \frac{k}{k - 2} + \cdots + \frac{k}{1} = k \left[\frac{1}{k} + \frac{1}{k - 1} + \cdots + 1 \right] = O(k \log k) \]
Covariance
Statistics of sums of RVs

For any random variables X and Y,

\[E[X + Y] = E[X] + E[Y] \]

But first, a new statistic!
Spot the difference

Compare/contrast the following two distributions:

Both distributions have the same $E[X]$, $E[Y]$, Var(X), and Var(Y)

Difference: how the two variables vary with each other.

Assume all points are equally likely.

$P(X = x, Y = y) = \frac{1}{N}$
Covariance

The covariance of two variables X and Y is:

\[
\]

Proof of second part (rewriting $E[X], E[Y]$ as μ_X, μ_Y to emphasize that they’re each constants):

\[
\begin{align*}
\text{Cov}(X, Y) &= E[(X - E[X])(Y - E[Y])] = E[(X - \mu_X)(Y - \mu_Y)] \\
&= E[XY - \mu_Y X - \mu_X Y + \mu_X \mu_Y] \\
&= E[XY] - E[\mu_Y X] - E[\mu_X Y] + E[\mu_X \mu_Y] \\
&= E[XY] - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_Y \\
&= E[XY] - \mu_X \mu_Y = E[XY] - E[X]E[Y]
\end{align*}
\]

(linearity of expectation)

(μ_X, μ_Y are constants)
Covariance

The **covariance** of two variables X and Y is:

\[
\]

Covariance measures how one random variable varies with a second.

- Outside temperature and utility bills have a **negative** covariance.
- Handedness and musical ability have near **zero** covariance.
- Product demand and price have a **positive** covariance.
Feel the covariance

Is the covariance positive, negative, or zero?

1. \(X = x \)
 \[E[X] \]
 \[Y = y \]
 \[E[Y] \]

2. \(X = x \)
 \[E[X] \]
 \[Y = y \]
 \[E[Y] \]

3. \(X = x \)
 \[E[X] \]
 \[Y = y \]
 \[E[Y] \]

\[
\]
Feel the covariance

Is the covariance positive, negative, or zero?

1. $X = x$
 $Y = y$
 $E[X]$
 $E[Y]$
 positive

2. $X = x$
 $Y = y$
 $E[X]$
 $E[Y]$
 negative

3. $X = x$
 $Y = y$
 $E[X]$
 $E[Y]$
 zero

\[
\]
Covarying humans

What is the covariance of weight W and height H?

$$= 3355.83 - (62.75)(52.75)$$

(positive) $= 45.77$

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Height (in)</th>
<th>$W \cdot H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>57</td>
<td>3648</td>
</tr>
<tr>
<td>71</td>
<td>59</td>
<td>4189</td>
</tr>
<tr>
<td>53</td>
<td>49</td>
<td>2597</td>
</tr>
<tr>
<td>67</td>
<td>62</td>
<td>4154</td>
</tr>
<tr>
<td>55</td>
<td>51</td>
<td>2805</td>
</tr>
<tr>
<td>58</td>
<td>50</td>
<td>2900</td>
</tr>
<tr>
<td>77</td>
<td>55</td>
<td>4235</td>
</tr>
<tr>
<td>57</td>
<td>48</td>
<td>2736</td>
</tr>
<tr>
<td>56</td>
<td>42</td>
<td>2352</td>
</tr>
<tr>
<td>51</td>
<td>42</td>
<td>2142</td>
</tr>
<tr>
<td>76</td>
<td>61</td>
<td>4636</td>
</tr>
<tr>
<td>68</td>
<td>57</td>
<td>3876</td>
</tr>
</tbody>
</table>

$E[W] = 62.75$
$E[H] = 52.75$
$E[WH] = 3355.83$

Covariance > 0: one variable ↑, other variable ↑
Properties of Covariance

The covariance of two variables X and Y is:

\[
\]

Properties:

1. $\text{Cov}(X, Y) = \text{Cov}(Y, X)$
2. $\text{Var}(X) = E[X^2] - (E[X])^2 = E[XX] - E[X]E[X] = \text{Cov}(X, X)$
3. Covariance of sums = sum of all pairwise covariances
 \[
 \text{Cov}(X_1 + X_2, Y_1 + Y_2) = \text{Cov}(X_1, Y_1) + \text{Cov}(X_2, Y_1) + \text{Cov}(X_1, Y_2) + \text{Cov}(X_2, Y_2)
 \]
 (proof left to you)
4. Covariance under linear transformation: $\text{Cov}(aX + b, Y) = a\text{Cov}(X, Y)$
Zero covariance does not imply independence

Let X take on values $\{-1,0,1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

What is the joint PMF of X and Y?
Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

<table>
<thead>
<tr>
<th>X</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>

1. $E[X] = \quad E[Y] =$

2. $E[XY] =$

3. $\text{Cov}(X, Y) =$

4. Are X and Y independent?
Zero covariance does not imply independence

Let X take on values $\{-1, 0, 1\}$ with equal probability $1/3$.

Define $Y = \begin{cases} 1 & \text{if } X = 0 \\ 0 & \text{otherwise} \end{cases}$

<table>
<thead>
<tr>
<th>X</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
</tr>
</tbody>
</table>

Marginal PMF of X, $p_X(x)$

<table>
<thead>
<tr>
<th>Y</th>
<th>0</th>
<th>1/3</th>
<th>1/3</th>
<th>1/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>1/3</td>
</tr>
</tbody>
</table>

Marginal PMF of Y, $p_Y(y)$

<table>
<thead>
<tr>
<th>X</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>1/3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
</tr>
</tbody>
</table>

1. $E[X] = -1(1/3) + 0(1/3) + 1(1/3) = 0 \\
 E[Y] = 0(2/3) + 1(1/3) = 1/3$

2. $E[XY] = (-1 \cdot 0)(1/3) + (0 \cdot 1)(1/3) + (1 \cdot 0)(1/3) \\
 = 0$

 = 0 - 0(1/3) = 0$ ✔

4. Are X and Y independent? ❌

$P(Y = 0|X = 1) = 1 \\
\neq P(Y = 0) = 2/3$
Variance of sums of RVs
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$
Variance of general sum of RVs

For any random variables X and Y,

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

Proof:

$$\text{Var}(X + Y) = \text{Cov}(X + Y, X + Y)$$

$$= \text{Cov}(X, X) + \text{Cov}(X, Y) + \text{Cov}(Y, X) + \text{Cov}(Y, Y)$$

$$= \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

More generally:

$$\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)$$

(proof in extra slides)
Statistics of sums of RVs

For any random variables X and Y,

$$E[X + Y] = E[X] + E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$$

For independent X and Y,

$$E[XY] = E[X]E[Y]$$

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

(Lemma: proof in extra slides)
Variance of sum of independent RVs

For independent X and Y,

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y)$$

Proof:

 $= 0$

2. $\text{Var}(X + Y) = \text{Var}(X) + 2 \cdot \text{Cov}(X, Y) + \text{Var}(Y)$

 $= \text{Var}(X) + \text{Var}(Y)$

 X and Y are independent
Proving Variance of the Binomial

\[X \sim \text{Bin}(n, p) \quad \text{Var}(X) = np(1 - p) \]

Let \[X = \sum_{i=1}^{n} X_i \]

Let \(X_i = \text{ith trial is heads} \)
\(X_i \sim \text{Ber}(p) \)
\(\text{Var}(X_i) = p(1 - p) \)

\(X_i \text{ are independent} \) (by definition)

\[
\begin{align*}
\text{Var}(X) &= \text{Var} \left(\sum_{i=1}^{n} X_i \right) \\
&= \sum_{i=1}^{n} \text{Var}(X_i) \\
&= \sum_{i=1}^{n} p(1 - p) \\
&= np(1 - p)
\end{align*}
\]

\(X_i \text{ are independent, therefore variance of sum} \)
\(= \text{sum of variance} \)

Variance of Bernoulli
Correlation
Covarying humans

What is the covariance of weight W and height H?

$$= 3355.83 - (62.75)(52.75)$$

$$= 45.77 \quad \text{(positive)}$$

What about weight (lb) and height (cm)?

$$\text{Cov}(2.20W, 2.54H)$$

$$= E[2.20W \cdot 2.54H] - E[2.20W]E[2.54H]$$

$$= 18752.38 - (138.05)(133.99)$$

$$= 255.06 \quad \text{(positive)}$$

⚠ Covariance depends on units!
Correlation

The **correlation** of two variables X and Y is:

$$\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

- **Note:** $-1 \leq \rho(X, Y) \leq 1$
- Correlation measures the **linear relationship** between X and Y:

 - $\rho(X, Y) = 1 \implies Y = aX + b$, where $a = \frac{\sigma_Y}{\sigma_X}$
 - $\rho(X, Y) = -1 \implies Y = aX + b$, where $a = -\frac{\sigma_Y}{\sigma_X}$
 - $\rho(X, Y) = 0 \implies$ uncorrelated (absence of linear relationship)
Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

1. $\rho(X, Y) = 1$
2. $\rho(X, Y) = -1$
3. $\rho(X, Y) = 0$
4. Other

A. $\rho(X, Y) = 1$
B. $\rho(X, Y) = -1$
C. $\rho(X, Y) = 0$
D. Other
Correlation reps

What is the correlation coefficient $\rho(X, Y)$?

1. $Y = -aX + b$
 - $a > 0$
 - B. $\rho(X, Y) = -1$

2. $Y = aX + b$
 - $a > 0$
 - A. $\rho(X, Y) = 1$

3. C. $\rho(X, Y) = 0$
 - “uncorrelated”

4. C. $\rho(X, Y) = 0$
 - $Y = X^2$

X and Y can be nonlinearly related even if $\rho(X, Y) = 0$.
Throwback to CS103: Conditional statements

Statement $P \rightarrow Q$: Independence \rightarrow No correlation ✔️

Contrapositive $\neg Q \rightarrow \neg P$: Correlation \rightarrow Dependence ✔️ (logically equivalent)

Inverse $\neg P \rightarrow \neg Q$: Dependence \rightarrow Correlation ❌ (not always)

Converse $Q \rightarrow P$: No correlation \rightarrow Independence ❌ (not always)

“Correlation does not imply causation”
Spurious Correlation
Spurious Correlations

\(\rho(X, Y) \) is used a lot to statistically quantify the relationship b/t X and Y.

Correlation:
0.947091
Spurious Correlations

\[\rho(X, Y) \] is used a lot to statistically quantify the relationship between \(X \) and \(Y \).

Per capita cheese consumption correlates with

Number of people who died by becoming tangled in their bedsheets

Correlation: 0.947091

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Divorce vs. Margarine

Arcade revenue vs. CS PhDs

Total revenue generated by arcades correlates with Computer science doctorates awarded in the US

Correlation: 0.947091

Data sources: U.S. Census Bureau and National Science Foundation

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Expectation of product of independent RVs

If X and Y are independent, then

$$E[XY] = E[X]E[Y]$$
$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

Proof:

$$E[g(X)h(Y)] = \sum_y \sum_x g(x)h(y)p_{X,Y}(x,y)$$
$$= \sum_y \sum_x g(x)h(y)p_X(x)p_Y(y)$$
$$= \sum_y \left(h(y)p_Y(y) \sum_x g(x)p_X(x) \right)$$
$$= \left(\sum_x g(x)p_X(x) \right) \left(\sum_y h(y)p_Y(y) \right)$$
$$= E[g(X)]E[h(Y)]$$

(for continuous proof, replace summations with integrals)

x and y are independent

Terms dependent on y are constant in integral of x

Summations separate
Variance of Sums of Variables

\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

Proof:
\[
\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \text{Cov} \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov}(X_i, X_j)
\]
\[
= \sum_{i=1}^{n} \text{Var}(X_i) + \sum_{i=1}^{n} \sum_{j=1, j\neq i}^{n} \text{Cov}(X_i, X_j)
\]
\[
= \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \text{Cov}(X_i, X_j)
\]

Symmetry of covariance:
\[
\text{Cov}(X, X) = \text{Var}(X)
\]

Adjust summation bounds