22: Maximum a Posteriori

Jerry Cain
May 20, 2024

Lecture Discussion on Ed
Maximum a Posteriori Estimator
Maximum A Posteriori (MAP) Estimator

Consider a sample of n iid random variables X_1, X_2, \ldots, X_n.

<table>
<thead>
<tr>
<th>Maximum Likelihood Estimator (MLE)</th>
<th>Maximum a Posteriori (MAP) Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>What parameter θ maximizes the likelihood of our observed data (X_1, X_2, \ldots, X_n)?</td>
<td>Given the sample data (X_1, X_2, \ldots, X_n), what is the most probable parameter θ?</td>
</tr>
</tbody>
</table>

Maximum Likelihood Estimator (θ_{MLE})

$$L(\theta) = f(X_1, X_2, \ldots, X_n | \theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

$$\theta_{MLE} = \arg \max_{\theta} f(X_1, X_2, \ldots, X_n | \theta)$$

Maximum a Posteriori Estimator (θ_{MAP})

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, \ldots, X_n)$$

$$f(\theta | X_1, X_2, \ldots, X_n)$$
Maximum A Posteriori (MAP) Estimator

Consider a sample of n iid random variables X_1, X_2, \ldots, X_n.

def The **Maximum a Posteriori (MAP) Estimator** of θ is the value of θ that maximizes the **posterior distribution** of θ.

$$\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$$

Intuition with Bayes’ Theorem:

- After seeing data, posterior belief of θ
- $P(\theta | \text{data}) = \frac{L(\theta) \times \text{prior}}{P(\text{data})}$
- Before seeing data, prior belief of θ

$L(\theta)$, probability of data given parameter θ.
Solving for θ_{MAP}

- Observe data: X_1, X_2, \ldots, X_n, all iid
- Let likelihood be same as MLE: $f(X_1, X_2, \ldots, X_n|\theta) = \prod_{i=1}^{n} f(X_i|\theta)$
- Let the prior distribution of θ be $g(\theta)$.

$$
\theta_{MAP} = \arg \max_{\theta} f(\theta|X_1, X_2, \ldots, X_n) = \arg \max_{\theta} \frac{f(X_1, X_2, \ldots, X_n|\theta)g(\theta)}{h(X_1, X_2, \ldots, X_n)}
$$

(Bayes' Theorem)

$$
= \arg \max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i|\theta)}{h(X_1, X_2, \ldots, X_n)}
$$

(indirect independence)

$$
= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i|\theta)
$$

($1/h(X_1, X_2, \ldots, X_n)$ is a positive constant w.r.t. θ)

$$
= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta) \right)
$$
θ_{MAP}: Interpretation 1

- Observe data: $X_1, X_2, ..., X_n$, all iid
- Let likelihood be same as MLE: $f(X_1, X_2, ..., X_n | \theta) = \prod_{i=1}^{n} f(X_i | \theta)$
- Let the prior distribution of θ be $g(\theta)$.

\[
\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n) = \arg \max_{\theta} \frac{f(X_1, X_2, ..., X_n | \theta) g(\theta)}{h(X_1, X_2, ..., X_n)}
\]

(Bayes’ Theorem)

\[
= \arg \max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i | \theta)}{h(X_1, X_2, ..., X_n)}
\]

(indipendence)

\[
= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i | \theta)
\]

(1/h($X_1, X_2, ..., X_n$) is a positive constant w.r.t. θ)

\[
= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta) \right)
\]

θ_{MAP} maximizes \log prior + log-likelihood
\[\theta_{MAP} : \text{Interpretation 2} \]

- Observe data: \(X_1, X_2, \ldots, X_n \), all iid
- Let likelihood be same as MLE: \(f(X_1, X_2, \ldots, X_n|\theta) = \prod_{i=1}^{n} f(X_i|\theta) \)
- Let the prior distribution of \(\theta \) be \(g(\theta) \).

\[
\theta_{MAP} = \arg \max_{\theta} f(\theta|X_1, X_2, \ldots, X_n) = \arg \max_{\theta} \prod_{i=1}^{n} f(X_i|\theta) \quad \text{(Bayes' Theorem)} \\
= \arg \max_{\theta} \frac{g(\theta) \prod_{i=1}^{n} f(X_i|\theta)}{h(X_1, X_2, \ldots, X_n)} \quad \text{(independence)} \\
= \arg \max_{\theta} g(\theta) \prod_{i=1}^{n} f(X_i|\theta) \quad (1/h(X_1, X_2, \ldots, X_n) \text{ is a positive constant w.r.t. } \theta) \\
= \arg \max_{\theta} \left(\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta) \right) \\
\theta_{MAP} \text{ maximizes log prior + log-likelihood} \]

The mode of the posterior distribution of \(\theta \).
Mode: A statistic of a random variable

The **mode** of a random variable X is defined as:

$$\arg\,\max_x p(x) \quad \text{(X discrete, PMF $p(x)$)}$$

$$\arg\,\max_x f(x) \quad \text{(X continuous, PDF $f(x)$)}$$

- Intuitively: The value of X that is "most likely".
- Note some distributions don’t have a unique mode (e.g., Uniform distribution, Bernoulli(0.5))

$$\theta_{MAP} = \arg\,\max_\theta f(\theta|X_1, X_2, \ldots, X_n)$$

This is another maximization problem where we take derivatives and set them equal to 0.

θ_{MAP} is the most probable θ given the data X_1, X_2, \ldots, X_n.
Bernoulli MAP: Choosing a prior
How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on \(\theta \)

Find \(\theta_{MAP} = \arg \max_{\theta} f(\theta|X_1, X_2, ..., X_n) \)

\[
\log g(\theta) + \sum_{i=1}^{n} \log f(X_i|\theta)
\]

- Differentiate, set to 0
- Solve

MAP depends on what \(g(\theta) \) we choose.
MAP for Bernoulli

- Flip a coin 8 times. Observe \(n = 7 \) heads and \(m = 1 \) tail.
- Choose a prior on \(\theta \). What is \(\theta_{MAP} \)?

Suppose we pick a prior \(\theta \sim \mathcal{N}(0.5, 1^2) \).

\[
\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta) = \log \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{(p-0.5)^2}{2}} \right) + \log \left(\binom{n+m}{n} p^n (1-p)^m \right)
\]

\[
= -\log(\sqrt{2\pi}) - \frac{(p-0.5)^2}{2} + \log \left(\binom{n+m}{n} \right) + n \log p + m \log(1-p)
\]

1. Determine log prior + log likelihood

2. Differentiate wrt (each) \(\theta \), set to 0

3. Solve resulting equations

\[
-(p - 0.5) + \frac{n}{p} - \frac{m}{1-p} = 0
\]

We should choose a prior that’s easier to deal with. This one is hard!

Cubic equations, nope not going to do it

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
A better approach: Use conjugate distributions

Observe data
Choose model

Choose prior on θ

Find $\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$

maximize
log prior + log-likelihood

$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$

• Differentiate, set to 0
• Solve

n heads, m tails

Bernoulli(p)

(choose conjugate distribution)

Up next: Conjugate priors are great for MAP!

if the choice is really up to us, why not choose a prior that is easily manipulated

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Bernoulli MAP: Conjugate prior
Beta is a conjugate distribution for Bernoulli

Beta is a **conjugate distribution** for Bernoulli, meaning:

- Prior and posterior parametric forms are the same
- Practically, conjugate means easy update: Add numbers of "successes" and "failures" seen to Beta parameters.
- You can set the prior to reflect how fair/biased you think the experiment is a priori.

\[\text{Beta}(1, 1) \text{ means you think all } \theta = p \text{ values equally likely.} \]

<table>
<thead>
<tr>
<th>Prior</th>
<th>Beta((a = n_{\text{imag}} + 1, b = m_{\text{imag}} + 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>Observe (n) successes and (m) failures</td>
</tr>
<tr>
<td>Posterior</td>
<td>Beta((a = n_{\text{imag}} + n + 1, b = m_{\text{imag}} + m + 1))</td>
</tr>
</tbody>
</table>

Mode of Beta\((a, b)\): \(\frac{a - 1}{a + b - 2}\)

(we’ll prove this in a few minutes)

Beta parameters \(a, b\) **are called hyperparameters.**

Interpret Beta\((a, b)\): \(a + b - 2\) trials, with \(a - 1\) successes and with \(b - 1\) failures
How does MAP work? (for Bernoulli)

Observe data

Choose model

Choose prior on θ

Find $\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$

n heads, m tails

Bernoulli(p) (some $g(\theta)$)

(maximize log prior + log-likelihood)

$$\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$$

• Differentiate, set to 0
• Solve

Mode of posterior distribution of θ

(posterior is also conjugate)

(choose conjugate distribution)
Conjugate strategy: MAP for Bernoulli

• Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail. $\{\}$ Define as data, D
• Choose a prior on θ. What is θ_{MAP}?

1. Choose a prior
 Suppose we pick a prior $\theta \sim \text{Beta}(a, b)$.

2. Determine posterior
 Because Beta is a conjugate distribution for Bernoulli, the posterior distribution is $\theta | D \sim \text{Beta}(a + n, b + m)$

3. Compute MAP
 $\theta_{MAP} = \frac{a + n - 1}{a + n + b + m - 2}$ (mode of Beta$(a + n, b + m)$)
MAP in practice

- Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2, 2)?
MAP in practice

- Flip a coin 8 times. Observe $n = 7$ heads and $m = 1$ tail.
- What is the MAP estimator of the Bernoulli parameter p, if we assume a prior on p of Beta(2, 2)?

1. Choose a prior

 $\theta \sim \text{Beta}(2,2)$. Before flipping the coin, we imagined 2 trials: 1 imaginary head, 1 imaginary tail.

 \[
 \frac{2-1}{2+1-2} = \frac{1}{2}
 \]

2. Determine posterior

 Posterior distribution of θ given observed data is Beta(9, 3)

 \[
 \begin{array}{l}
 \text{9 is really 2 + 7} \\
 \text{3 is really 2 + 1}
 \end{array}
 \]

 After the experiment, we saw 10 trials:

 \[
 \begin{array}{l}
 \text{8 heads (imaginary and real),} \\
 \text{2 tails (imaginary and real).}
 \end{array}
 \]

3. Compute MAP

 $\theta_{MAP} = \frac{8}{10}$
Proving the mode of Beta

Observe data

Choose model

Choose prior on θ

Find $\theta_{MAP} = \arg \max_{\theta} f(\theta | X_1, X_2, ..., X_n)$

These are equivalent interpretations of θ_{MAP}. We’ll use this equivalence to prove the mode of Beta.

Maximize $\log g(\theta) + \sum_{i=1}^{n} \log f(X_i | \theta)$

- Differentiate, set to 0
- Solve

$\theta = \frac{n}{n + m}$
MAP for Bernoulli, conjugate prior (from first principles)

- Flip a coin 8 times. Observe \(n = 7 \) heads and \(m = 1 \) tail.
- Choose a prior on \(\theta \). What is \(\theta_{MAP} \)?

Suppose we pick a prior \(\theta \sim \text{Beta}(a, b) \).

\[
g(\theta = p) = \frac{1}{\beta} p^{a-1} (1 - p)^{b-1}
\]

normalizing constant, \(\beta \)

1. Determine log prior + log likelihood

\[
\log g(\theta) + \log f(X_1, X_2, ..., X_n | \theta) = \log \left(\frac{1}{\beta} p^{a-1} (1 - p)^{b-1} \right) + \log \left(\binom{n + m}{n} p^n (1 - p)^m \right)
\]

\[
= \log \frac{1}{\beta} + (a - 1) \log(p) + (b - 1) \log(1 - p) + \log \left(\binom{n + m}{n} \right) + n \log p + m \log(1 - p)
\]

2. Differentiate w.r.t. (each) \(\theta \), set to 0

\[
\frac{a - 1}{p} + \frac{n}{p} - \frac{b - 1}{1 - p} - \frac{m}{1 - p} = 0
\]

3. Solve (next slide)
MAP for Bernoulli, conjugate prior (from first principles)

- Flip a coin 8 times. Observe \(n = 7 \) heads and \(m = 1 \) tail.
- Choose a prior on \(\theta \). What is \(\theta_{MAP} \)?

Suppose we pick a prior \(\theta \sim \text{Beta}(a, b) \). \(g(\theta) = \frac{1}{\beta} p^{a-1} (1 - p)^{b-1} \)

3. Solve for \(p \)

\[
\frac{a - 1}{p} + \frac{n}{1 - p} - \frac{b - 1}{1 - p} - \frac{m}{1 - p} = 0
\]

\[
\Rightarrow \quad \frac{a + n - 1}{p} - \frac{b + m - 1}{1 - p} = 0
\]

\[
\Rightarrow \quad (a + n - 1) - (a + n - 1)p = (b + m - 1)p
\]

\[
\Rightarrow \quad p(a + n + b + m - 2) = a + n - 1
\]

\[
\theta_{MAP} = \frac{a + n - 1}{a + n + b + m - 2}
\]

If we choose a conjugate prior, we avoid calculus with MAP, and we can simply report mode of posterior.

The mode of the posterior, Beta\((a + n, b + m)\)!
Choosing hyperparameters for conjugate prior
Where’d you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: $\text{Beta}(3,8)$: 2 imaginary heads, 7 imaginary tails, mode: $\frac{2}{9}$
 - Prior 2: $\text{Beta}(7,4)$: 6 imaginary heads, 3 imaginary tails, mode: $\frac{6}{9}$

Now flip 100 coins and get 58 heads and 42 tails.

1. What are the two posterior distributions?
2. What are the modes of the two posterior distributions?
Where’d you get them priors?

- Let θ be the probability a coin turns up heads.
- Model θ with 2 different priors:
 - Prior 1: $\text{Beta}(3,8)$: 2 imaginary heads, 7 imaginary tails \[\text{mode: } \frac{2}{9} \]
 - Prior 2: $\text{Beta}(7,4)$: 6 imaginary heads, 3 imaginary tails \[\text{mode: } \frac{6}{9} \]

Now flip 100 coins and get 58 heads and 42 tails.

- Posterior 1: $\text{Beta}(61,50)$ \[\text{mode: } \frac{60}{109} \]
- Posterior 2: $\text{Beta}(65,46)$ \[\text{mode: } \frac{64}{109} \]

Provided we collect enough data, posteriors will converge to the true value and choice of prior will matter less.
Laplace smoothing

MAP with Laplace smoothing: a prior which represents k imagined observations of each outcome.

- Categorical data (i.e., Multinomial, Bernoulli/Binomial)
- Also known as additive smoothing

Laplace estimate

Imagine $k = 1$ of each outcome (follows from Laplace’s "law of succession")

Example:

Laplace estimate for probabilities from previously mentioned experiment (100 coins: 58 heads, 42 tails)

$$\text{heads} \quad \frac{58 + 1}{100 + 2} = \frac{59}{102}$$

$$\text{tails} \quad \frac{42 + 1}{100 + 2} = \frac{43}{102}$$

Laplace smoothing:
- Easy to implement/remember
Consider our previous 6-sided die.

- Roll the dice \(n = 12 \) times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall \(\theta_{MLE} \):

\[
\begin{align*}
p_1 &= \frac{3}{12}, \\ p_2 &= \frac{2}{12}, \\ p_3 &= \frac{0}{12}, \\ p_4 &= \frac{3}{12}, \\ p_5 &= \frac{1}{12}, \\ p_6 &= \frac{3}{12}
\end{align*}
\]

What are your Laplace estimates for each roll outcome?
Consider our previous 6-sided die.

- Roll the dice \(n = 12 \) times.
- Observe: 3 ones, 2 twos, 0 threes, 3 fours, 1 fives, 3 sixes

Recall \(\theta_{MLE} \):
\[
\begin{align*}
p_1 &= 3/12, p_2 = 2/12, p_3 = 0/12, \quad \text{⚠️} \\
p_4 &= 3/12, p_5 = 1/12, p_6 = 3/12
\end{align*}
\]

What are your Laplace estimates for each roll outcome?

\[
p_i = \frac{X_i + 1}{n + m}
\]

\[
\begin{align*}
p_1 &= 4/18, p_2 = 3/18, p_3 = 1/18, \quad \checkmark \\
p_4 &= 4/18, p_5 = 2/18, p_6 = 4/18
\end{align*}
\]

Laplace smoothing:
- Easy to implement/remember
- Avoids parameter estimation of 0
Extra: Other Conjugates
Conjugate distributions

MAP estimator:

\[\theta_{\text{MAP}} = \arg \max_\theta f(\theta | X_1, X_2, \ldots, X_n) \]

The mode of the posterior distribution of \(\theta \)

<table>
<thead>
<tr>
<th>Distribution parameter</th>
<th>Conjugate distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernoulli (p)</td>
<td>Beta</td>
</tr>
<tr>
<td>Binomial (p)</td>
<td>Beta</td>
</tr>
<tr>
<td>Multinomial (p_i)</td>
<td>Dirichlet</td>
</tr>
<tr>
<td>Poisson (\lambda)</td>
<td>Gamma</td>
</tr>
<tr>
<td>Exponential (\lambda)</td>
<td>Gamma</td>
</tr>
<tr>
<td>Normal (\mu)</td>
<td>Normal</td>
</tr>
<tr>
<td>Normal (\sigma^2)</td>
<td>Inverse Gamma</td>
</tr>
</tbody>
</table>
Multinomial is Multiple times the fun

Dirichlet($a_1, a_2, ..., a_m$) is a conjugate for Multinomial.

- Generalizes Beta in the same way Multinomial generalizes Binomial:

\[
f(x_1, x_2, ..., x_m) = \frac{1}{B(a_1, a_2, ..., a_m)} \prod_{i=1}^{m} x_i^{a_i-1}
\]

Prior \hspace{1cm} Dirichlet($a_1, a_2, ..., a_m$)

Saw $(\sum_{i=1}^{m} a_i) - m$ imaginary trials, with $a_i - 1$ of outcome i

Experiment \hspace{1cm} Observe $n_1 + n_2 + \cdots + n_m$ new trials, with n_i of outcome i

Posterior \hspace{1cm} Dirichlet($a_1 + n_1, a_2 + n_2, ..., a_m + n_m$)

MAP:

\[
p_i = \frac{a_i + n_i - 1}{(\sum_{i=1}^{m} a_i) + (\sum_{i=1}^{m} n_i) - m}
\]
Good times with Gamma

Gamma(\(\alpha, \beta\)) is a conjugate for Poisson.
- Also conjugate for Exponential, but we won’t delve into that
- Mode of gamma: \((\alpha - 1)/\beta\)

Prior \[\theta \sim \text{Gamma}(\alpha, \beta) = \frac{\beta^\alpha x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)} \]
Saw \(\alpha - 1\) total imaginary events during \(\beta\) prior time periods

Experiment
Observe \(n\) events during next \(k\) time periods

Posterior \((\theta | n \text{ events in } k \text{ periods}) \sim \text{Gamma}(\alpha + n, \beta + k)\)

MAP:
\[\theta_{MAP} = \frac{\alpha + n - 1}{\beta + k} \]
MAP for Poisson

Let \(\lambda \) be the average # of successes in a time period.

1. What does it mean to have a prior of \(\theta \sim \text{Gamma}(11,5) \)?

 Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate = 2

 Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

3. What is \(\theta_{\text{MAP}} \)?
MAP for Poisson

Let λ be the average # of successes in a time period.

1. What does it mean to have a prior of $\theta \sim \text{Gamma}(11,5)$?

 Observe 10 imaginary events in 5 time periods, i.e., observe at Poisson rate $= 2$

 Now perform the experiment and see 11 events in next 2 time periods.

2. Given your prior, what is the posterior distribution?

 $(\theta|n \text{ events in } k \text{ periods}) \sim \text{Gamma}(22, 7)$

3. What is θ_{MAP}?

 $\theta_{MAP} = 3$, the updated Poisson rate