23: Naïve Bayes

Jerry Cain
May 22, 2024

Lecture Discussion on Ed
Preamble: Machine Learning
The Path Before Us

Parameter Estimation

- Deep Learning
- Linear Regression
- Naïve Bayes
- Logistic Regression
The Path Before Us

- Linear Regression
- Naive Bayes
- Logistic Regression
- Deep Learning

Unbiased estimators: \bar{X}, S^2
Maximizing likelihood: θ_{MLE}
Bayesian estimation: θ_{MAP}
Machine Learning uses a lot of data.

Many different forms of machine learning
- We focus on the problem of **prediction** given prior observations.

Task: Identify the chair
Data: All the chairs ever

Supervised learning: A category of machine learning where you have labeled data for the problem you are solving.
Supervised learning

Real World Problem → Model the problem → Formal Model θ → Learning Algorithm → Testing Data

→ Prediction Function $\hat{\theta}$ → Evaluation score
Supervised learning

Modeling

Real World Problem

Model the problem

Formal Model θ

Learning Algorithm

Prediction Function $\hat{\theta}$

Training Data

Testing Data

Evaluation score

Supervised learning is not CS109's focus. CS228 is awesome.
Supervised learning

Parameter estimation is a basis for learning from data.

Real World Problem → Model the problem → Formal Model θ → Learning Algorithm → Prediction Function $\hat{\theta}$ → Evaluation score

Training Data

Testing Data
Model and dataset

Many different forms of machine learning
• We focus on one specific type: prediction from past observations.

Goal
Observe X, predict some unknown Y

• Features
Vector X of m observations (new term: feature vector)
$X = (X_1, X_2, ..., X_m)$

• Output
Variable Y (sometimes called class label if discrete)

Model
$\hat{Y} = g(X)$, a function on X
Training data

\[X = (X_1, X_2, X_3, \ldots, X_{300}) \]

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 300</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Patient 2</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>Patient (n)</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Training data notation

\[(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\]

\(n\) datapoints, assumed to be iid

\(i\)-th datapoint \((x^{(i)}, y^{(i)})\):

- \(m\) features: \(x^{(i)} = (x_1^{(i)}, x_2^{(i)}, \ldots, x_m^{(i)})\)
- A single output \(y^{(i)}\)
- Independent of all other datapoints

Training Goal: Use these \(n\) datapoints to learn a model \(\hat{Y} = g(X)\) that predicts \(Y\)
Supervised learning

Real World Problem → Model the problem → Formal Model θ → Learning Algorithm → Prediction Function $\hat{\theta}$ → Evaluation score

Training Data → Testing Data

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024
Testing data notation

\[(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)}) \]

\[n_{test \ other} \] datapoints, assumed to be iid

\[\text{ith \ datapoint} \ (x^{(i)}, y^{(i)}) : \]
- Has the same structure as your training data

Testing Goal: Leveraging the model \(\hat{Y} = g(X) \) that you trained, see how well you can predict \(Y \) on known data
Two tasks we will focus on

Many different forms of machine learning
• We focus on the problem of prediction based on observations.

Goal
Based on observed X, predict some unknown Y

• Features
Vector X of m observations (new term: feature vector)
$X = (X_1, X_2, \ldots, X_m)$

• Output
Variable Y (also called class label if discrete)

Model
$\hat{Y} = g(X)$, a function on X

• Regression
prediction when Y is continuous

• Classification
prediction when Y is discrete
Regression: Predicting real numbers

Training data: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\)

<table>
<thead>
<tr>
<th>Year</th>
<th>CO2 levels</th>
<th>Sea level</th>
<th>Feature (m)</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>338.8</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Year 2</td>
<td>340.0</td>
<td>1</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Year (n)</td>
<td>340.76</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Global Land-Ocean temperature
Classification: Predicting class labels

\[
X = (X_1, X_2, X_3, \ldots, X_{300})
\]

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 300</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Patient 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Patient n</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Brute Force Bayes
Classification: Healthy hearts

\[X = (X_1) \]

Feature 1	Output
Patient 1 | 1 | 0
Patient 2 | 1 | 1
\vdots
Patient \(n \) | 0 | 1

Single feature: Region of Interest (ROI) is healthy (1) or unhealthy (0)

How can we predict whether heart is healthy (1) or not (0)?

The following strategy is not used in practice but helps us understand how to approach classification.
Classification: Brute Force Bayes

\[\hat{Y} = g(X) \]

Our prediction for \(Y \) is a function of \(X \)

\[= \arg \max_{y=\{0,1\}} P(Y \mid X) \]

Proposed model: Choose the \(Y \) that is more or most likely given \(X \)

\[= \arg \max_{y=\{0,1\}} \frac{P(X \mid Y)P(Y)}{P(X)} \]

(Bayes’ Theorem)

\[= \arg \max_{y=\{0,1\}} P(X \mid Y)P(Y) \]

(1/P(\(X \)) is constant wrt \(y \))

If we estimate \(P(X \mid Y) \) and \(P(Y) \), we can classify data points.
Training: Estimate parameters

\[X = (X_1) \]

- **Feature 1**

 | Output | Conditional probability tables \(\hat{P}(X|Y) \) |
 |--------|---|
 | 0 | \(\hat{P}(X|Y = 0) \) \(\theta_1 \) \(\theta_3 \) |
 | 1 | \(\hat{P}(X|Y = 1) \) \(\theta_2 \) \(\theta_4 \) |

- **Marginal probability table \(\hat{P}(Y) \)**

 | \(Y = 0 \) | \(\theta_5 \) |
 | \(Y = 1 \) | \(\theta_6 \) |

\[\hat{Y} = \arg \max_{y \in \{0,1\}} \hat{P}(X|Y)\hat{P}(Y) \]

Training Goal: Use \(n \) datapoints to learn \(2 \cdot 2 + 2 = 6 \) parameters.
Training: Estimate parameters $\hat{P}(X|Y)$

<table>
<thead>
<tr>
<th>Count:</th>
<th># datapoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 = 0, Y = 0$:</td>
<td>4</td>
</tr>
<tr>
<td>$X_1 = 1, Y = 0$:</td>
<td>6</td>
</tr>
<tr>
<td>$X_1 = 0, Y = 1$:</td>
<td>0</td>
</tr>
<tr>
<td>$X_1 = 1, Y = 1$:</td>
<td>100</td>
</tr>
<tr>
<td>Total:</td>
<td>110</td>
</tr>
</tbody>
</table>

Patient n | 0 | 1

$\hat{P}(X|Y = 0)$ | $\hat{P}(X|Y = 1)$

$X_1 = 0$ | θ_1 | θ_3

$X_1 = 1$ | θ_2 | θ_4

$X|Y = 0$ and $X|Y = 1$

are each multinomials with 2 outcomes!

Use MLE or Laplace (MAP) estimate $\hat{P}(X|Y)$ and $\hat{P}(Y)$ as parameters.
Training: MLE estimates, $\hat{P}(X|Y)$

| | $\hat{P}(X|Y = 0)$ | $\hat{P}(X|Y = 1)$ |
|-------|---------------------|---------------------|
| $X_1 = 0$ | 0.4 | 0.0 |
| $X_1 = 1$ | 0.6 | 1.0 |

MLE of $\hat{P}(X_1 = x|Y = y) = \frac{#(X_1 = x, Y = y)}{#(Y = y)}$

Just count!

Count: # datapoints
- $X_1 = 0, Y = 0$: 4
- $X_1 = 1, Y = 0$: 6
- $X_1 = 0, Y = 1$: 0
- $X_1 = 1, Y = 1$: 100
Total: 110
Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$

| | $\hat{P}(X|Y = 0)$ | $\hat{P}(X|Y = 1)$ |
|-------|---------------------|---------------------|
| $X_1 = 0$ | 0.4 | 0.0 |
| $X_1 = 1$ | 0.6 | 1.0 |

MLE of $\hat{P}(X_1 = x|Y = y) = \frac{\#(X_1 = x,Y = y)}{\#(Y = y)}$

Just count!

Laplace of $\hat{P}(X_1 = x|Y = y) = \frac{\#(X_1 = x,Y = y) + \beta}{\#(Y = y) + \beta \cdot n}$

Just count + add imaginary trials!
Training: Laplace (MAP) estimates, $\hat{P}(X|Y)$

| Patient n | X_1 | Y | $\hat{P}(X|Y = 0)$ | $\hat{P}(X|Y = 1)$ |
|------------|-------|-----|---------------------|---------------------|
| 0 | 0 | 0 | 0.4 | 0.0 |
| 1 | 1 | 0 | 0.6 | 1.0 |
| 1 | 0 | 1 | 0.42 | 0.01 |
| 1 | 1 | 1 | 0.58 | 0.99 |

MLE of $\hat{P}(X_1 = x|Y = y) = \frac{\#(X_1 = x,Y = y)}{\#(Y = y)}$

Just count!

MAP of $\hat{P}(X_1 = x|Y = y) = \frac{\#(X_1 = x,Y = y) + 1}{\#(Y = y) + 2}$

Just count + add imaginary trials!

Count:
- $X_1 = 0, Y = 0$: 4
- $X_1 = 1, Y = 0$: 6
- $X_1 = 0, Y = 1$: 0
- $X_1 = 1, Y = 1$: 100
- Total: 110

Lisa Yan, Chris Piech, Mehran Sahami, and Jerry Cain, CS109, Spring 2024

Stanford University
Testing

\[\hat{Y} = \arg \max_{y \in \{0, 1\}} \hat{P}(X|Y)\hat{P}(Y) \]

| (MAP) | \(\hat{P}(X|Y = 0) \) | \(\hat{P}(X|Y = 1) \) |
|-------|-----------------|-----------------|
| \(X_1 = 0 \) | 0.42 | 0.01 |
| \(X_1 = 1 \) | 0.58 | 0.99 |

<table>
<thead>
<tr>
<th>(MLE)</th>
<th>(\hat{P}(Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y = 0)</td>
<td>0.09</td>
</tr>
<tr>
<td>(Y = 1)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

New patient has a healthy ROI \((X_1 = 1)\). What is your prediction, \(\hat{Y}\)?

\[
\hat{P}(X_1 = 1|Y = 0)\hat{P}(Y = 0) = 0.58 \cdot 0.09 \approx 0.052
\]

\[
\hat{P}(X_1 = 1|Y = 1)\hat{P}(Y = 1) = 0.99 \cdot 0.91 \approx 0.901
\]

A. \(0.052 < 0.5 \) \(\Rightarrow \) \(\hat{Y} = 1 \)
B. \(0.901 > 0.5 \) \(\Rightarrow \) \(\hat{Y} = 1 \)
C. \(0.052 < 0.901 \) \(\Rightarrow \) \(\hat{Y} = 1 \)
Brute Force Bayes classifier

\[\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(X|Y)\hat{P}(Y) \]

(\(\hat{P}(Y)\) is an estimate of \(P(Y)\),
\(\hat{P}(X|Y)\) is an estimate of \(P(X|Y)\))

Estimate these probabilities—i.e.,
learn these parameters using MLE or Laplace (MAP)

Training

\(\hat{P}(X_1, X_2, \ldots, X_m|Y = 1)\)
\(\hat{P}(X_1, X_2, \ldots, X_m|Y = 0)\)
\(\hat{P}(Y = 1)\)
\(\hat{P}(Y = 0)\)

Testing

Given an observation \(X = (X_1, X_2, \ldots, X_m)\), predict

\[\hat{Y} = \arg \max_{y=\{0,1\}} \left(\hat{P}(X_1, X_2, \ldots, X_m|Y)\hat{P}(Y) \right) \]
Naïve Bayes
Brute Force Bayes: $m = 300$ (# features)

\[X = (X_1, X_2, X_3, \ldots, X_{300}) \]

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 300</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>Patient 2</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Patient n</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

This won’t be too bad, right?
Brute Force Bayes: $m = 300$ (# features)

\[X = (X_1, X_2, X_3, \ldots, X_{300}) \]

<table>
<thead>
<tr>
<th>Patient n</th>
<th>$X_1 = 0, X_2 = 0, \ldots, X_{299} = 0, X_{300} = 0, Y = 0$:</th>
<th># datapoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patient 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patient 3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Patient 4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Patient 5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Patient n</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

This won’t be too bad, right?
Brute Force Bayes: \(m = 300 \) (# features)

\[
\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y \mid X)
\]

\[
= \arg \max_{y=\{0,1\}} \frac{\hat{P}(X \mid Y) \hat{P}(Y)}{\hat{P}(X)}
\]

\[
= \arg \max_{y=\{0,1\}} \hat{P}(X \mid Y) \hat{P}(Y)
\]

- \(\hat{P}(Y = 1 \mid x) \): estimated probability a heart is healthy given \(x \)
- \(X = (X_1, X_2, \ldots, X_{300}) \): whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

\[
\hat{P}(X \mid Y) \quad \hat{P}(Y)
\]

A. \(2 \cdot 2 + 2 = 6 \)
B. \(2 \cdot 300 + 2 = 602 \)
C. \(2 \cdot 2^{300} + 2 = \text{a lot} \)

Learn parameters through MLE or MAP
Brute Force Bayes: \(m = 300 \) (# features)

\[
\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y \mid X)
\]

\[
= \arg \max_{y=\{0,1\}} \frac{\hat{P}(X \mid Y) \hat{P}(Y)}{\hat{P}(X)}
\]

\[
= \arg \max_{y=\{0,1\}} \hat{P}(X \mid Y) \hat{P}(Y)
\]

Learn parameters through MLE or MAP

- \(\hat{P}(Y = 1 \mid x) \): estimated probability a heart is healthy given \(x \)
- \(X = (X_1, X_2, \ldots, X_{300}) \): whether 300 regions of interest (ROI) are healthy (1) or unhealthy (0)

How many parameters do we have to learn?

\[
\hat{P}(X \mid Y) \quad \hat{P}(Y)
\]

A. \(2 \cdot 2 + 2 = 6 \)
B. \(2 \cdot 300 + 2 = 602 \)
C. \(2 \cdot 2^{300} + 2 = \text{a lot} \)

This approach requires you to learn \(O(2^m) \) parameters.
The problem with our current classifier

\[\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y \mid X) \]

Choose the \(Y \) that is most likely given \(X \)

\[= \arg \max_{y=\{0,1\}} \frac{\hat{P}(X \mid Y) \hat{P}(Y)}{\hat{P}(X)} \]

(Bayes’ Theorem)

\[= \arg \max_{y=\{0,1\}} \hat{P}(X \mid Y) \hat{P}(Y) \]

(1/\(P(X) \) is constant w.r.t. \(y \))

Estimating this joint conditional distribution is intractable.

What if we could make a simplifying assumption—even if incredibly naïve—to make our parameter estimation effort computationally tractable?
The Naïve Bayes assumption

\[\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y | X) \]

\[= \arg \max_{y=\{0,1\}} \frac{\hat{P}(X|Y) \hat{P}(Y)}{\hat{P}(X)} \]

\[= \arg \max_{y=\{0,1\}} \hat{P}(X|Y) \hat{P}(Y) \]

\[= \arg \max_{y=\{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j|Y) \right) \hat{P}(Y) \]

Assumption:

\(X_1, \ldots, X_m \) are all **conditionally independent** given \(Y \).

Naïve Bayes Assumption
Naïve Bayes Classifier

\[
\hat{Y} = \arg \max_{y = \{0, 1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j|Y) \right) \hat{P}(Y)
\]

Training

What is the Big-O of # of parameters we need to learn?

A. \(O(m) \)
B. \(O(2^m) \)
C. other
Naïve Bayes Classifier

\[\hat{Y} = \arg \max_{y \in \{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j | Y) \right) \hat{P}(Y) \]

Training

for \(j = 1, \ldots, m: \)
- \(\hat{P}(X_j = 1 | Y = 0) \),
- \(\hat{P}(X_j = 1 | Y = 1) \)

\(\hat{P}(Y = 1) \)

Testing

\[\hat{Y} = \arg \max_{y \in \{0,1\}} \left(\log \hat{P}(Y) + \sum_{j=1}^{m} \log \hat{P}(X_j | Y) \right) \]

Use MLE or Laplace (MAP)
NETFLIX

and Learn
Classification terminology check

Training data: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\)

<table>
<thead>
<tr>
<th>Movie 1</th>
<th>Movie 2</th>
<th>...</th>
<th>Movie m</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User 1

1. 1 0 ... 1 2. 1

User 2

3. 1 1 ... 0 0

... ...

User n

4. 0 0 ... 1 1

1: like movie
0: dislike movie
Predicting user TV preferences

Will a user like the Pokémon TV series?

Observe indicator variables $X = (X_1, X_2)$:

$X_1 = 1$: "likes Star Wars"

$X_2 = 1$: "likes Harry Potter"

Output Y indicator:

$Y = 1$: "likes Pokémon"

Predict $\hat{Y} = \arg \max_{y=\{0,1\}} \hat{P}(Y \mid X)$
Predicting user TV preferences

Which probabilities do you need to estimate? How many are there?

- Brute Force Bayes (strawman, without NB assumption)

- Naïve Bayes

During training, how to estimate the prob\[\hat{P}(X_1 = 1, X_2 = 1|Y = 0)\] with MLE? with Laplace?

- Brute Force Bayes

- Naïve Bayes
Ex 1. Naïve Bayes Classifier (MLE)

\[\hat{Y} = \arg \max_{y=\{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j|Y) \right) \hat{P}(Y) \]

Training

\forall i: \hat{P}(X_j = 1|Y = 0), \hat{P}(X_j = 0|Y = 0), \text{ Use MLE or Laplace (MAP)}

\hat{P}(X_j = 1|Y = 1), \hat{P}(X_j = 0|Y = 0), \hat{P}(Y = 1), \hat{P}(Y = 0)

Testing

\[\hat{Y} = \arg \max_{y=\{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j|Y) \right) \hat{P}(Y) \]
Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:
- X_1: “likes Star Wars”
- X_2: “likes Harry Potter”

Predict Y: “likes Pokémon”

<table>
<thead>
<tr>
<th></th>
<th>$X_1 = 0$</th>
<th>$X_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 0$</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$X_2 = 0$</th>
<th>$X_2 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 0$</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Training data counts

1. How many datapoints (n) are in our training data?

2. Compute MLE estimates for $\hat{P}(X_1|Y)$:

<table>
<thead>
<tr>
<th></th>
<th>$X_1 = 0$</th>
<th>$X_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = 0$</td>
<td>$\hat{P}(X_1 = 0</td>
<td>Y = 0)$</td>
</tr>
<tr>
<td>$Y = 1$</td>
<td>$\hat{P}(X_1 = 0</td>
<td>Y = 1)$</td>
</tr>
</tbody>
</table>
Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. \(X = (X_1, X_2) \):
- \(X_1 \): “likes Star Wars”
- \(X_2 \): “likes Harry Potter”

Predict \(Y \): “likes Pokémon”

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(X_2)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y)</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Training data counts

1. How many datapoints (\(n \)) are in our training data?
2. Compute MLE estimates for \(\hat{P}(X_1|Y) \):
Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:
- X_1: “likes Star Wars”
- X_2: “likes Harry Potter”

Predict Y: “likes Pokémon”

<table>
<thead>
<tr>
<th>X_1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.23</td>
<td>0.77</td>
</tr>
<tr>
<td>1</td>
<td>0.24</td>
<td>0.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X_2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5/13 ≈ 0.38</td>
<td>8/13 ≈ 0.62</td>
</tr>
<tr>
<td>1</td>
<td>7/17 ≈ 0.41</td>
<td>10/17 ≈ 0.59</td>
</tr>
</tbody>
</table>

Training data counts:

<table>
<thead>
<tr>
<th>X_1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X_2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Training: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:
- X_1: “likes Star Wars”
- X_2: “likes Harry Potter”

Predict Y: “likes Pokémon”

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>Y</th>
<th></th>
<th>X_2</th>
<th>Y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0.23</td>
<td>0.77</td>
<td>0</td>
<td>0.38</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.24</td>
<td>0.76</td>
<td>1</td>
<td>0.41</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Now that we’ve trained and found parameters, it’s time to classify new users!
Ex 1. Naïve Bayes Classifier (MLE)

\[
\hat{Y} = \arg\max_{y=\{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j|Y) \right) \hat{P}(Y)
\]

Training

\[
\forall i: \hat{P}(X_j = 1|Y = 0), \hat{P}(X_j = 0|Y = 0), \quad \text{Use MLE or Laplace (MAP)}
\]

Testing

\[
\hat{Y} = \arg\max_{y=\{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j|Y) \right) \hat{P}(Y)
\]
Testing: Naïve Bayes for TV shows (MLE)

Observe indicator vars. $X = (X_1, X_2)$:

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.77</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Predict Y: “likes Pokémon”

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.43</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.76</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Suppose a **new person** “likes Star Wars” ($X_1 = 1$) but “dislikes Harry Potter” ($X_2 = 0$).

Will they like Pokémon? Need to predict Y:

$$
\hat{Y} = \arg \max_{Y \in \{0,1\}} \hat{P}(X|Y)\hat{P}(Y) = \arg \max_{Y \in \{0,1\}} \hat{P}(X_1|Y)\hat{P}(X_2|Y)\hat{P}(Y)
$$

If $Y = 0$: $\hat{P}(X_1 = 1|Y = 0)\hat{P}(X_2 = 0|Y = 0)\hat{P}(Y = 0) = 0.77 \cdot 0.38 \cdot 0.43 = 0.126$

If $Y = 1$: $\hat{P}(X_1 = 1|Y = 1)\hat{P}(X_2 = 0|Y = 1)\hat{P}(Y = 1) = 0.76 \cdot 0.41 \cdot 0.57 = 0.178$

Since term is greatest when $Y = 1$, predict $\hat{Y} = 1$
Ex 2. Naïve Bayes Classifier (MAP)

\[
\hat{Y} = \arg \max_{y \in \{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j | Y) \right) \hat{P}(Y)
\]

Training

\[
\forall i: \quad \hat{P}(X_j = 1 | Y = 0), \hat{P}(X_j = 0 | Y = 0), \hat{P}(X_j = 1 | Y = 1), \hat{P}(X_j = 0 | Y = 0), \hat{P}(Y = 1), \hat{P}(Y = 0)
\]

Testing

\[
\hat{Y} = \arg \max_{y \in \{0,1\}} \left(\prod_{j=1}^{m} \hat{P}(X_j | Y) \right) \hat{P}(Y)
\]

(note the same as before)
Training: Naïve Bayes for TV shows (MAP)

Observe indicator vars. $X = (X_1, X_2)$:
- X_1: “likes Star Wars”
- X_2: “likes Harry Potter”

Predict Y: “likes Pokémon”

<table>
<thead>
<tr>
<th>X_1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X_2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

Training data counts

What are our MAP estimates using Laplace smoothing for $\hat{P}(X_j | Y)$?

\[
\hat{P}(X_j = x | Y = y) = \frac{\#(X_j=x,Y=y)}{\#(Y=y)}
\]

A. \[
\frac{\#(X_j=x,Y=y)}{\#(Y=y)}
\]

B. \[
\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+2}
\]

C. \[
\frac{\#(X_j=x,Y=y)+1}{\#(Y=y)+4}
\]

D. other
Training: Naïve Bayes for TV shows (MAP)

Observe indicator vars. \(X = (X_1, X_2) \):
- \(X_1 \): “likes Star Wars”
- \(X_2 \): “likes Harry Potter”

Predict \(Y \): “likes Pokémon”

\[
\begin{array}{c|cc}
Y & 0 & 1 \\
\hline
0 & 3 & 10 \\
1 & 4 & 13 \\
\end{array}
\]

\[
\begin{array}{c|cc}
Y & 0 & 1 \\
\hline
0 & 5 & 8 \\
1 & 7 & 10 \\
\end{array}
\]

Training data counts

\[
\hat{Y} = \arg \max_{y \in \{0,1\}} \left(\prod_{i=1}^{m} \hat{P}(X_i | Y) \right) \hat{P}(Y)
\]

In practice:
- We use Laplace for \(\hat{P}(X_j | Y) \) in case some events \(X_j = x_j \) don’t appear
- We **don’t** use Laplace for \(\hat{P}(Y) \), because all class labels should appear reasonably often