
CS109 Week 4 Exam Solution

Jerry Cain
CS109

Winter 2024

This is a closed calculator/computer exam. You are, however, permitted to consult the two double-sided
sheets of notes you’ve prepared ahead of time. You’re otherwise not permitted to refer to any other notes.

In the event of an incorrect answer, any explanation you provide of how you obtained your answer can po-
tentially allow us to give you partial credit for a problem. It is fine for your answers to include summations,
products, factorials, exponents, and combinations unless stated otherwise.

I acknowledge and accept the letter and spirit of the honor code.

Signature:

Full Name [print]:

SunetID [i.e., your @stanford.edu email]:

SUID [i.e., your seven or eight-digit student ID number]:



1 Doris and Valentine’s Day [15 points]

Valentine’s Day is just two weeks away, and since Doris isn’t dating anyone at the moment, she’s planning
on baking 100 biscuits and giving them to her 6 best friends.

a. [3 points] Assuming all 100 biscuits look precisely the same, how many ways can all 100 be dis-
tributed and shared with her 6 best friends. (The 100 biscuits are indistinguishable, but the friends
are all distinguishable. And never give Doris any biscuits! Just share them with her six friends.)

Solution. This is classic divider method, where 100 indistinct objects are distributed across 6
distinct buckets.

(
100 + 6 − 1

6 − 1

)
=

(
105

5

)
=

(
105
100

)
b. [4 points] Assuming all 100 biscuits look precisely the same, how many ways can all 100 be dis-

tributed and shared with her 6 best friends, subject to the constraint that each friend be given at least
one biscuit. (The 100 biscuits are still indistinguishable, and the six friends are all distinguishable.)

Solution. This is similar, except that 6 cookies are constrained and 94, not 100, are free to be
distributed across the 6 friends. (

94 + 6 − 1
6 − 1

)
=

(
99
5

)
=

(
99
94

)
c. [3 points] Now assume that all of the biscuits are distinguishable from one another. How many ways

can the biscuits be distributed between her six friends? (Note that it’s possible once again that one or
more friends are denied biscuits.)

Solution. Because biscuits are distinct, each one can be directed to any one of six friends,
independently of all other biscuits. This is classic product rule for 100 different ”experiments”,
each of which has six different outcomes.

6100



d. [5 points] The biscuits are still distinguishable from one another, but each friend must be given at
least one biscuit. How many ways can the biscuits be distributed between her six friends now? Your
answer should leverage Inclusion-Exclusion, and it should be left in the form of a summation.

Solution. Our answer from part c overcounts, because it includes distributions where one or
more of her friends go without biscuits. We need to subtract all the ways exactly one friend
might be denied biscuits, recognizing that doing so will overcompensate by subtracting some
distributions more than once (e.g., those where the first two of her six friends go without). That
means we need to add all of those distributions back, continuing to subtract, add, subtract, add
until all legitimate distributions have been counted exactly once.

This is precisely what the Inclusion-Exclusion principle is designed for!

6100 −
(
6
1

)
· 5100 +

(
6
2

)
· 4100 −

(
6
3

)
· 3100 +

(
6
4

)
· 2100 −

(
6
5

)
· 1100

Note that
(6
6
)
· 0100 = 0 could have been included as well, particularly if you expressed your

answer using Σ notation instead of an expanded sum as I have.



2 Combinatorial Proofs [10 points]

Consider the following combinatorial identity for all integers 𝑛 ≥ 0:

𝑛∑︁
𝑠=0

𝑛−𝑠∑︁
𝑡=0

(
𝑛

𝑠

) (
𝑛 − 𝑠

𝑡

)
= 3𝑛

Present a combinatorial proof of the above identity, without relying on any tedious algebra. As a hint, con-
sider all of the ways to distribute 𝑛 distinct items across three different subsets 𝑆, 𝑇 , and 𝑉 .

Solution. The right-hand side counts the number of ways each of the 𝑛 elements can be distributed to
each of the three subsets. There are three options for the first element, three for the second, three for
the third, and so forth.

The left-hand side partitions all 3𝑛 possible distributions by the sizes of 𝑆 and 𝑇 .
(𝑛
𝑠

)
counts the

number of ways 𝑠 of the 𝑛 elements can be directed to 𝑆, and
(𝑛−𝑠

𝑡

)
counts the number of ways the

𝑛 − 𝑠 elements not assigned to S can be split between 𝑇 (of size 𝑡) and 𝑉 (of size 𝑣 = 𝑛 − 𝑠 − 𝑡). This
describes a full partition of all possible distributions, and we double sum over all of them.



3 Metallic Tastes [20 points]

Whenever a patient complains of a metallic taste in their mouth, doctors are concerned the patient may be
suffering from acid reflux, Bell’s Palsy, or perhaps both.

Acid reflux is the backflow of stomach acid into the esophagus, and Bell’s Palsy is a temporary weakening
of the facial muscles that prompts one side of the patient’s face to droop. Both can impact what taste buds
perceive.

Let 𝐷1 be the event that a patient suffers from acid reflex, let 𝐷2 be the event that a patient suffers from
Bell’s Palsy, and let 𝑀 be the event that someone is detecting a metallic taste in their mouth. We’ll assume
that 𝐷1 and 𝐷2 are independent events where 𝑃(𝐷1) = 𝑝1, 𝑃(𝐷2) = 𝑝2, and that someone with neither of
these two conditions might still be experiencing a metallic taste with a probability of 𝑚.

We’ll make the reasonable assumptions that 0 < 𝑝1, 𝑝2 < 1 and that there’s at least one person in the pop-
ulation who is healthy and symptom-free. We’ll also assume that someone suffering from either or both of
these conditions always, always, always complains of a metallic taste in their mouth, so that 𝑃(𝑀 |𝐷1) =

𝑃(𝑀 |𝐷2) = 𝑃(𝑀 |𝐷1𝐷2) = 1.

a. [5 points] Present an expression for 𝑃(𝑀).

Solution. I let 𝑞1 = 1 − 𝑝1 and 𝑞2 = 1 − 𝑝2. We use the Law of Total Probability to add up the
many different pieces contributing to our 𝑃(𝑀) calculation.

𝑃(𝑀) = 𝑃(𝑀 |𝐷1)𝑝1 + 𝑃(𝑀 |𝐷2)𝑝2 − 𝑃(𝑀 |𝐷1𝐷2)𝑝1𝑝2 + 𝑚𝑞1𝑞2

= 𝑝1 + 𝑝2 − 𝑝1𝑝2 + 𝑚𝑞1𝑞2

b. [8 points, 4 and 4] Present expressions for 𝑃(𝐷1 |𝑀) and 𝑃(𝐷1𝐷2 |𝑀). We’ll assume your expression
for 𝑃(𝐷2 |𝑀) is analogous to that presented 𝑃(𝐷1 |𝑀). If your answer relies on your answer from part
a, simply refer to that probability value as 𝑝𝑎.

Solution. Using Bayes’ Rule, we have the following:

𝑃(𝐷1 |𝑀) = 𝑃(𝑀 |𝐷1)𝑃(𝐷1)
𝑃(𝑀)

=
𝑃(𝑀 |𝐷1)𝑝1

𝑝𝑎

=
𝑝1
𝑝𝑎

=
𝑝1

𝑝1 + 𝑝2 − 𝑝1𝑝2 + 𝑚𝑞1𝑞2

𝑃(𝐷1𝐷2 |𝑀) = 𝑃(𝑀 |𝐷1𝐷2)𝑃(𝐷1)𝑃(𝐷1)
𝑃(𝑀)

=
𝑃(𝑀 |𝐷1𝐷2)𝑝1𝑝2

𝑝𝑎

=
𝑝1𝑝2
𝑝𝑎

=
𝑝1𝑝2

𝑝1 + 𝑝2 − 𝑝1𝑝2 + 𝑚𝑞1𝑞2



c. [4 points] Are 𝐷1 and 𝐷2 conditionally independent of 𝑀 when 0 < 𝑚 < 1?

Solution.
Assuming 𝑃(𝑀 |𝐷1) = 𝑃(𝑀 |𝐷2) = 𝑃(𝑀 |𝐷1𝐷2) = 1, it’s impossible for 𝑃(𝐷1 |𝑀)𝑃(𝐷2 |𝑀)
to equal 𝑃(𝐷1𝐷2 |𝑀)—i.e. that 𝐷1 and 𝐷2 are conditionally independent given 𝑀)—since
equality would require the denominator common to all of your answers to part b. be equal to its
own square root. That’s only possible if the denominator is either 0 or 1, and it’s neither.

d. [3 points] When 𝑚 = 0, it can be shown that 𝐷1 and 𝐷2 are not conditionally independent given 𝑀 .
Present an intuitive explanation as to why that’s the case without relying on algebra.

Solution.
If we know that 𝑚 = 0, we can confine ourselves to the world where everyone has a metallic taste
in their mouth, and everyone in this world therefore suffers from one or both of the diseases. In
this world, knowing that someone doesn’t have acid reflux means they must have Bell’s Palsy,
or vice versa.

That means:

1 = 𝑃(𝐷2 |𝐷𝑐
1𝑀) ≠ 𝑃(𝐷2 |𝑀) = 𝑝2

so knowing whether 𝐷1 occurs informs our belief of whether 𝐷2 occurs.



4 Mittens and Kittens [15 points]

The fourth problem from the Winter 2024 midterm was cannibalized for your current problem set, so I grabbed
this problem from a very, very old take-home exam to test similar things. Because the exam was a take-
home, students were expected to manage a little more algebra than I would during an in-person, no-calculators-
allowed exam. Still, it’s a cool problem.

You have 8 pairs of mittens, each a different pattern. Left and right mittens are also distinct. Suppose that
you are fostering kittens, and you leave them alone for a few hours with your mittens. When you return, you
discover that they have hidden 4 mittens! Suppose that your kittens are equally likely to hide any 4 of your
16 distinct mittens. Let 𝑋 be the number of complete, distinct pairs of mittens that remain.

a. [7 points] Compute the probability mass function of 𝑋 , 𝑝𝑋 (𝑥). (Hint: Note the support of 𝑋 is {4, 5, 6},
since only 4, 5, or 6 complete pairs are possible after the kitten fiasco.)

Solution. There are three possible scenarios involving 4 mittens. Assuming unordered outcomes:

•
(8
4
) (2

1
)4

= 1120: 4 mittens from 4 different pairs are gone, leaving 4 complete pairs. Choose
4 pairs out of the 8 pairs, then for each pair choose either the left or right mitten to give
to your kittens.

•
(8
3
) (3

1
) (2

1
)2

= 672: 1 complete pair is gone, and 2 mittens from 2 different pairs are gone,
leaving 5 complete pairs. Choose 3 out of the 8 pairs, then choose the one complete pair
to give to your kittens. Then, for the remaining 2 patterns, choose the left or right mitten
to give to your kittens.

•
(8
2
)
= 28: 2 complete pairs are gone, leaving 6 complete pairs. Choose 2 out of the 8 pairs,

and give all four of the chosen mittens.

The sample space has a total of
(16

4
)
= 1820 outcomes. If each outcome is equally likely, we

have the following, brute-force PMF

𝑝𝑋 (4) =
1120
1820

, 𝑝𝑋 (5) =
672

1820
, 𝑝𝑋 (6) =

28
1820

b. [2 points] Compute 𝐸 [𝑋] using the definition of expectation and your answer to part a.

Solution.
𝐸 [𝑋] = 4 · 1120

1820
+ 5 · 672

1820
+ 6 · 28

1820
=

22
5

= 4.4 mittens.

c. [6 points] Define the random variable 𝑋𝑖 to be 1 if your 𝑖th pair of mittens is complete after the kitten



fiasco, and 0 otherwise, Using this definition of 𝑋𝑖 for 𝑖 = 1, . . . , 8 and the linearity of expectation,
compute 𝐸 [𝑋] again.

Solution. We would let 𝑋𝑖 = 1 with probability 𝑝 =
(14

4
)
/
(16

4
)
= 11

20 . Our probability here is the
fraction of all ways to choose four mittens from the 14 that are not of the 𝑖𝑡ℎ pair. That means
the expected value of 𝑋𝑖 is 1 · 11

20 + 0 · 9
20 = 11

20 for all values of 𝑖 = 1, 2, 3, 4, 5, 6, 7, 8.

By defining 𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋8 and using linearity of expectation, we compute 𝐸 [𝑋]
to be 8 · 11

20 = 22
5 , which matches the value generated in part b.
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