
CS109 Final Exam

Chris Piech
CS109

Fall 2022

This is a closed calculator/computer exam. You are, however, allowed to use notes in the exam.

In the event of an incorrect answer, any explanation you provide of how you obtained your answer can
potentially allow us to give you partial credit for a problem. For example, describe the distributions and
parameter values you used, where appropriate. It is fine for your answers to include summations, products,
factorials, exponentials, and combinations.

You can leave your answer in terms of Φ (the CDF of the standard normal) or Φ−1 (the inverse CDF). For
example Φ

(
3
4

)
is an acceptable final answer. Recall that the exam is going to be “curved” according to the

difficulty of the questions and as such hard questions will not translate to lower grades.

I acknowledge and accept the letter and spirit of the honor code. I pledge to write more neatly than I have in
my entire life:

Signature:

Family Name (print):

Given Name (print):

Email (preferably your gradescope email):

1 Short Answer (22 points)

Answer each of the following questions. You must give a brief justification for your answer.

a. (5 points) What is the probability that a randomly chosen three-digit integer (from 0 to 999 inclusive)
will be divisible by 5? Note that 0 is divisible by 5.

There are 1000 total numbers between 0 and 999, so 1000 is our sample space. The event space is
20 × 10 (where 20 is the number of digits divisible by 5 from 0 to 99 and there are 10 sets of 100
between 0 and 999. Thus our probability is 200

1000 = 0.2

3cm

b. (9 points) Suppose 𝑋 is a random variable that is normally distributed with a mean of 100 and a standard
deviation of 15. What is the probability that a random sample of size 10 from this distribution will have
a mean between 95 and 105?

We know that 𝑋 ∼ N(𝜇 = 100, 𝜎 = 15). The sample mean is given by:

𝑋̄ ∼
∑10

𝑖=1 𝑋𝑖

𝑛
= N(𝜇 = 100, 𝜎 =

15
√

10
)

Normalizing we get that:

𝑃(95 − 100
4.74

< 𝑋̄ <
105 − 100

4.74
)

𝑃(−1.05 < 𝑍 < 1.05)

𝑃(1.05) − 𝑃(−1.05)

𝑃(1.05) − 1 + 𝑃(1.05)

c. (8 points) Each child in a daycare has a 0.2 probability of having disease A and has an independent 0.4
probability of having disease B. A child is sick if they have either disease A or disease B. If there are
10 children in a daycare what is the probability that 2 or more are sick?

Let 𝐴 and 𝐵 be the events that a child has disease A and disease B, respectively. A child is healthy if
they have neither disease A nor disease B. So,

𝑃(sick) = 1 − 𝑃(healthy)
= 1 − 𝑃(𝐴𝐶 , 𝐵𝐶)
= 1 − 𝑃(𝐴𝐶)𝑃(𝐵𝐶) (𝐴 ⊥ 𝐵)
= 1 − (1 − 𝑃(𝐴)) (1 − 𝑃(𝐵))
= 1 − (0.8) (0.6)
= 1 − (0.48)
= 0.52

Let 𝑌 be the number of children that are sick. We can write this as 𝑌 ∼ Bin(10, 𝑃(sick)). Thus, we have

𝑃(𝑌 ≥ 2) = 1 − 𝑃(𝑌 < 2)

= 1 −
1∑︁

𝑘=0
(0.52)𝑘 (1 − 0.52)10−𝑘 .

enumerate

2 Machine Learning (21 points)
a. (5 points) When implementing logistic regression, a student decides to add a second intercept

value. To do so they add an extra feature with value 0 to each datapoint. How will this impact
training?

There will be no impact on training since we have a value of 0, so when we compute 𝜃𝑇𝑥, this
new feature will have no contribution to our probability.

b. (8 points) A Naive Bayes classifier is trained on a dataset with 100 examples, 30 of which are
labeled as positive and 70 of which are labeled as negative. Instead of using a Laplace prior, you
use a Beta(𝑎 = 3, 𝑏 = 4) prior. What is your estimate for the probability 𝑌 = 1?

This implies that we have 5 imaginary trials with 2 successes and 3 failures. We can update our
MAP probability to be:

𝑃(𝑌 = 1) = 30 + 2
100 + 5

=
32

105

c. (8 points) Sometimes, we would like to incorporate additional terms that represent interactions
between different features into a logistic regression model. Imagine a dataset with two features,
𝑥1 and 𝑥2, and a corresponding label 𝑦 for each datapoint. We will add the second-order feature
𝑥1𝑥2, so that our model is 𝑃(𝑌 = 𝑦 |𝑋 = 𝑥) = 𝜎(𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3 · 𝑥1𝑥2). Explain in 1 or 2
sentences how you would change your logistic regression code in order to train this model.

We would have to update our code to compute this feature (𝑥1𝑥2) and add it to our features list.
We also extend our theta and gradient list to accommodate the new theta value.

3 Night Sight (20 points)
In this problem we explore how to use probability theory to take photos in the dark. Digital cameras
have a sensor that capture photons over the duration of a photo shot to produce pictures. However, these
sensors are subject to “shot noise” which are random fluctuations in the amount of photons that hit the
lens. In the scope of this problem, we only consider a single pixel. The arrival of shot noise photons
on a surface is independent with constant rate.

a. (6 points) Shot noise photons land on a particular pixel at a rate of 10 photons per microsecond
(𝜇s). If the time duration of a photo shot is 1000 𝜇s, what is the variance of the amount of photons
captured by the pixel during a single photo?

Answer. By memoryless property, we can model the amount of photons captured by the pixel as

𝐶 ∼ Poi(10, 000).

Then, the variance of the photons captured is 10,000 (quite high).

b. (14 points) To mitigate shot noise, Stanford graduates realized that you can take a shutter shot
(many camera shots in quick succession) and average the number of photons captured. The largest
number of photos a camera can take in 1000𝜇s is 15 photos, each with a duration of 66𝜇s. Let X
be the average quantity of shot noise photons across the 15 photos, captured by the single pixel.
What is Var(𝑋)?

Answer. By the first part,
𝐶𝑖 ∼ Poi(10, 000)

By CLT, the variance is

Var
(
𝐶1 + · · · + 𝐶15

15

)
=

1
152 Var(𝐶𝑖) =

10000
152 ≈ 666/15

since each 𝐶𝑖 are independent. We see this reduces the noise of the photons in the pixel by a factor
of 𝑘2 where 𝑘 is the number of shots.

4 Penalty Shootout (20 points)
Soccer games may end up with a penalty shootout. Use probability to estimate the probability that a
particular team will win. In a penalty shoot out each team takes 5 shots. If after 5 shots both teams have
the same number of goals, they repeat taking one more shot each, until one team has more goals.
Assume that: Players on team A have a 0.8 probability of scoring on each penalty shot. Players on team
B have a 0.7 probability of scoring on each penalty shot. Assume that each shot is independent. What
is the exact probability that team A wins?

Let 𝐴𝑟 be the random variable for the total number of penalties scored by team 𝐴, and 𝐵𝑟 be the random
variable for the total number of penalties scored by team 𝐵 in the first five shots.
These random variables can be modelled using binomials

𝐴𝑟 ∼ Bin(5, 0.8) 𝐵𝑟 ∼ Bin(5, 0.7)

Lets calculate 𝑝𝑟 the probability that 𝐴 wins in the first five goals 𝑝𝑟 = 𝑃(𝐴𝑟 > 𝐵𝑟):

𝑝𝑟 =

5∑︁
𝑎=1

𝑎−1∑︁
𝑏=0

𝑃(𝐴𝑟 = 𝑎, 𝐵𝑟 = 𝑏)

=

5∑︁
𝑎=1

𝑎−1∑︁
𝑏=0

𝑃(𝐴𝑟 = 𝑎) (𝐵𝑟 = 𝑏)

=

5∑︁
𝑎=1

𝑎−1∑︁
𝑏=0

(
5
𝑎

)
0.8𝑎 · 0.25−𝑎

(
5
𝑏

)
0.7𝑏 · 0.35−𝑏

Let 𝑝𝑡 be the probability that the two teams tie in the first five goals:

𝑝𝑡 =

5∑︁
𝑖=0

𝑃(𝐴𝑟 = 𝑖, 𝐵𝑟 = 𝑖)

=

5∑︁
𝑖=0

(
5
𝑖

)
0.8𝑖 · 0.25−𝑖

(
5
𝑖

)
0.7𝑖 · 0.35−𝑖

=

5∑︁
𝑖=0

(
5
𝑖

)2
(0.8 · 0.7)𝑖 · (0.2 · 0.3)5−𝑖

If they tie in the first five goals, let 𝑝𝑒 be the probability that team A wins in the extra shots:

𝑝𝑒 =

∞∑︁
𝑖=0

(0.8 · 0.3) (0.2 · 0.3 + 0.8 · 0.7)𝑖

Aside: We can also compute 𝑝𝑒 recursively:

𝑝𝑒 = 𝑃(A wins and no tie in round 1) + 𝑃(A wins and tie in round 1)
= (0.8) ∗ (0.3) + (0.8 ∗ 0.7 + 0.2 ∗ 0.3) ∗ 𝑝𝑒

𝑝𝑒 − 0.62 ∗ 𝑝𝑒 = 0.24
𝑝𝑒 (1 − 0.62) = 0.24

𝑝𝑒 =
0.24
0.38

= 0.63

The overall probability is 𝑝𝑟 + 𝑝𝑡 · 𝑝𝑒

≈ (𝑁𝑈𝑀) + (0.273) ∗ (0.6316)

5 Better (20 points)
Write a function betterwhich returns the approximate probability that video A has a higher probability
of being liked than video B, based on historical observations. Each video has two values: likes and
not likes. Model the probability that a viewer likes a movie as a random variable and use a Laplace
prior for the random variable. You may use sampling if it is helpful (use on the order of 1 million
samples).
def better(a likes, a not likes, b likes, b not likes):

num_samples = 1000000

count_where_aprob_gt_bprob = 0

for samp in (range(num_samples)):

params for beta are (num_successes + 2) and (num_fails +2), with LaPlace

prior

a_sample_prob = scipy.stats.beta.rvs(a_likes + 2, a_not_likes + 2)

b_sample_prob = scipy.stats.beta.rvs(b_likes + 2, b_not_likes + 2)

if a_sample_prob > b_sample_prob:

count_where_aprob_gt_bprob += 1

return count_where_aprob_gt_bprob / num_samples

6 B-Reel (35 points)
A social media application “B-Reel” promises to send users a notification exactly once each day
“randomly” in a 10 hour period. You want to test if the time that notifications come in are truly uniform.
You have recorded 100 IID historical values: [𝑥1, 𝑥2, . . . , 𝑥100] where 𝑥𝑖 ∈ [0, 10] is the time the
notification came in for the ith day, measured in hours from the start of the time period.

a. (5 points) Calculate the likelihood of the dataset given each value is IID from a uniform(0, 10). In
otherwords, the density of each value.

Let 𝐷 be the dataset event.

𝑃(𝐷 |uniform) =
100∏
𝑖=1

𝑃(𝑋𝑖 = 𝑥𝑖 |uniform)

= 0.1100

b. (10 points) You have an alternative hypothesis: there is a 0.4 probability a notification comes in
the first half of the day, and a 0.6 probability that a notification comes in the second half of the day
(and that the time is uniform within the halves). The historical data has 45 notifications in the first
half of the day and 55 in the second half. What is the probability density of these 100 samples,
given this alternative hypothesis?

𝑃(𝐷 |alternative) =
100∏
𝑖=1

𝑃(𝑋𝑖 = 𝑥𝑖 |alternative)

= (0.4 · 1/5)45 ∗ (0.6 · 1/5)55

Many people will use 0.4 as the probability that an event will occur in the first 5 hours however,
that isn’t a probability density. The PDF is a two step process, the event comes in the first half and
then we use the density of the uniform in the range 0 to 5, which is 1

5−0 .
Forgetting this adjustment or using a binomial are worth a good amount of partial credit, though
importantly they aren’t correct, because we want a value that would work for 𝑝𝑎. There is a
very outside possibility that a student will use a binomial count here, which is consistent with a
binomial count in part 𝑎. If they were consistent that would lead to the correct answer in part (c)
and as such is worth almost full marks.

c. (8 points) Let 𝑝𝑎 and 𝑝𝑏 be your answers to part a and b respectively. What is the probability of
your alternative hypothesis? Assume that the samples must come from either the uniform or the
alternative hypothesis. Your prior belief that B-Reel is using a uniform(0,10) is 0.6.

𝑃(alternative|𝐷) = 𝑝𝑏 ∗ 0.4/(𝑝𝑏 ∗ 0.4 + 𝑝𝑎 ∗ 0.6)

Allow error carried forward from previous parts (assume that 𝑝𝑎 and 𝑝𝑏 are correct).

d. (12 points) Perhaps we don’t have enough data. Use bootstrapping to estimate the variance of the
probability calculated, if you were to repeat this experiment 10,000 times. Let data be the list of
historical values. You can use the function var(list) to estimate the sample variance from a list
of values.

import numpy as np

def solution(data):

n = len(data)

probs = []

for i in range(10000):

resampled = np.random.choice(data, size=n, replace=True)

calculate likelihood of samples using method in part b.

count_morning = sum([1 if num < 5 for num in resampled])

count_night = n - count_morning

prob_a = 0.1**100

prob_b = ((0.4 * 0.2) ** count_morning) * ((0.6 * 0.2) **

count_night)

p_alternative = (prob_b * 0.4) / (prob_b * 0.4 + prob_a * 0.6)

probs.append(p_alternative)

return var(probs)

7 Code survival (20 points)
The Gopertz distribution can be used to model how long a piece of code will remain in production. It
is defined by parameter 𝑎 and has probability density function:

𝑓 (𝑋 = 𝑥) = 2𝑎 · 𝑒3𝑎−2𝑎·𝑒2𝑥

We wish to model how long a particular code will last at a given company. To this end we collect 𝑁
independent measurements of how long code lasts in production: 𝑥1, 𝑥2, . . . , 𝑥𝑁 . Explain, in words,
how you would choose parameter 𝑎 using the maximum likelihood estimation framework, and provide
any necessary derivatives.

We start by defining our likelihood function

𝐿 (𝑎) =
𝑁∏
𝑖=1

2𝑎 · 𝑒 (3𝑎−2𝑎·𝑒2𝑥𝑖)

We’ll now compute the log likelihood as follows:

𝐿𝐿 (𝑎) =
𝑁∑︁
𝑖=1

log(2𝑎 · 𝑒 (3𝑎−2𝑎·𝑒2𝑥𝑖))

Now we can compute the derivative with respect to 𝑎.

𝜕𝐿𝐿

𝜕𝑎
=

𝜕

𝜕𝑎

𝑁∑︁
𝑖=1

log(2𝑎 · 𝑒 (3𝑎−2𝑎·𝑒2𝑥𝑖))

=

𝑁∑︁
𝑖=1

𝜕

𝜕𝑎
log(2𝑎 · 𝑒 (3𝑎−2𝑎·𝑒2𝑥𝑖))

=

𝑁∑︁
𝑖=1

𝜕

𝜕𝑎
(log(2) + log(𝑎) + (3𝑎 − 2𝑎 · 𝑒2𝑥𝑖))

=

𝑁∑︁
𝑖=1

1
𝑎
+ 𝜕

𝜕𝑎
(3𝑎 − 2𝑎 · 𝑒2𝑥𝑖)

=

𝑁∑︁
𝑖=1

1
𝑎
+ 3 − 2𝑒2𝑥𝑖

We accept any answer that mentions gradient descent/ascent or setting the derivative equal to 0.

8 Approximate Counting Algorithm (22 points)
What if you wanted a counter that could count up to the number of atoms in the universe, but you
wanted to store the counter in 8 bits? You could use the algorithm below. Show that the expected return
value of stochastic counter(4), where count is called four times, is in fact equal to four.
def stochastic_counter(true_count):

n = -1

for i in range(true_count):

n += count(n)

return 2 ** n # 2ˆn, aka 2 to the power of n

def count(n):

To return 1 you need n heads. Always returns 1 if n is <= 0

for i in range(n):

if not coin_flip():

return 0

return 1

def coin_flip():

returns true 50% of the time

return random.random() < 0.5

Let 𝑋 be a random variable for the value of 𝑛 at the end of stochastic counter(4). Note that 𝑋 is
not a binomial because the probabilities of each outcome change.
Let 𝑅 be the return value of the function. 𝑅 = 2𝑋 which is a function of 𝑋 . Use the law of unconscious
statistician

𝐸 [𝑅] =
∑︁
𝑥

2𝑥 · 𝑃(𝑋 = 𝑥)

We can compute each of the probabilities 𝑃(𝑋 = 𝑥) separately. Note that the first two calls to count
will always return 1. Let 𝐻𝑖 be the event that the 𝑖th call returns 1. Let 𝑇𝑖 be the event that the 𝑖th call
returns 0. 𝑋 can’t be less than 1 because the first two calls to count always return 1.
𝑃(𝑋 = 1) = 𝑃(𝑇3, 𝑇4)
𝑃(𝑋 = 2) = 𝑃(𝐻3, 𝑇4) + 𝑃(𝑇3, 𝐻4)
𝑃(𝑋 = 3) = 𝑃(𝐻3, 𝐻4)
At the point of the third call to count, 𝑛 = 1. If 𝐻3 then 𝑛 = 2 for the fourth call and the loop runs twice.

𝑃(𝐻3, 𝑇4) = 𝑃(𝐻3) · 𝑃(𝑇4 |𝐻3)

=
1
2
· (1

2
+ 1

4
)

𝑃(𝐻3, 𝐻4) = 𝑃(𝐻3) · 𝑃(𝐻4 |𝐻3)

=
1
2
· 1

2

If 𝑇3 then 𝑛 = 1 for the fourth call.

𝑃(𝑇3, 𝐻4) = 𝑃(𝑇3) · 𝑃(𝐻4 |𝑇3)

=
1
2
· 1

2

𝑃(𝑇3, 𝑇4) = 𝑃(𝑇3) · 𝑃(𝑇4 |𝑇3)

=
1
2
· 1

2

Plug everything in:

𝐸 [𝑅] =
3∑︁

𝑥=1
2𝑥 · 𝑃(𝑋 = 𝑥)

= 2 · 1
4
+ 4 · 5

8
+ 8 · 1

8
= 4

9 Ranking (1 point)
Bonus point: rank the questions (1 - 8) from this exam in order of how confident you feel in the
correctness of your answer. For example, writing 3 ≤ 1 ≤ 5 would mean you are most confident in your
answer for question 5 and least confident in your answer for question 3.
Please rank whole questions (1 - 8) and not subparts.

That’s all folks. Thank you all for the wonderful quarter and we hope you have a fantastic winter break.
Night Sight is a real algorithm invented by Stanford CS folks and is now in production in Google pixel
(and presumably other places too). Approximate counting is a real randomized algorithm which can
count in log log space. Better is a more sophisticated way to rank videos than sorting by average likes.

	Short Answer (22 points)
	Machine Learning (21 points)
	Night Sight (20 points)
	Penalty Shootout (20 points)
	Better (20 points)
	B-Reel (35 points)
	Code survival (20 points)
	Approximate Counting Algorithm (22 points)
	Ranking (1 point)

