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Section Signups Are Due, In The Past?

We have virtual sections for
SCPD students -- everyone
gets to have a section!

Sign up before EOD tomorrow



»
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We are going to make history today



Review



Counting & Combinatorics

Counting operations on n objects

e

Sort, order matters Choose k Put in r buckets

{permutations} {combinations} / \

an \

None
ot Some Distinct Distinct g
Distinct Istinc istinc
ISU Distinct Distinct
n ny  nl n (n+r—1)
n! = 7 ' r
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Counting & Combinatorics

Counting operations on n objects

e

Sort, order matters Choose k Put in r buckets

{permutations} {combinations} / \

S\ \

None
ot Some Distinct Distinct o
D istinc istinc
Istinct Distinct Distinct
n! 7 v r
ny'na! . .. k) kl(n—k) n!(r —1)!

(5 options) (4 options) (3 options) (2 options) (1 option)
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Counting & Combinatorics

Counting operations on n objects

e

Sort, order matters Choose k Put in r buckets

{permutations} {combinations} / \

an \

None
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" nilng!. .. n!(r—1)!

MISSISSIPPI

Piech & Cain, CS109, Stanford University




Counting & Combinatorics

Counting operations on n objects

e

Sort, order matters Choose k Put in r buckets

{permutations} {combinations} / \

R \

- None
. Some - ot
Distinct Sistinat Distinct Distinct Distinct
| n! (n) — (n+r—1)!
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Counting & Combinatorics

Counting operations on n objects

e

Sort, order matters Choose k Put in r buckets

{permutations} {combinations} / \

an \

None
. . SOme . . o o
Distinct Sror o Distinct Distinct Distinct
" n! <n) _ n! o (n4+7r—1)!
' nilns!. .. k kl(n —k)! n!l(r —1)!
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Counting & Combinatorics

Counting operations on n objects

e

Sort, order matters Choose k Put in r buckets

{permutations} {combinations} / \

an \

None
ot Some Distinct Distinct e
D Istinc Istinc
Istinct Distint Distinct
n! 7 v r
nilna!. .. k kl(n —k)! nl(r —1)!
® 99|90 ¥

\ / l \ / X1 +x, + -+ x- =n,
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Counting Practice: Evolutionary Trees
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Counting Practice: Evolutionary Trees

To construct an evolutionary tree between WEAN f . E 28 ..8%
species, we have to compare data between BEEEREREEEEERE
all possible pairs of species. poriera (@ T
Ctenophora
Cnidaria
If we have n species, how many unique rcosla — gf

Echinodermata

pairs of species are there?

Chordata

Plathyhelminthes ﬂ

n
Rotifera ?g :
Ectoprocta %
Brachiopoda ,&\

Mollusca

240
Annelida %Y

Nematoda

Arthropoda A

' n
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Counting Practice: Evolutionary Trees

To construct an evolutionary tree between WEAN f . E 28 ..8%
species, we have to compare data between BEEEREREEEEERE
all possible pairs of species. poriera (@ T
Ctenophora
Cnidaria @
If we have n species, how many unique rcosla — gf

Echinodermata

pairs of species are there?

Chordata

Plathyhelminthes ﬁ

n
Rotifera ?g :
Ectoprocta %

n Brachiopoda ,&

Answer: P— ""?
2 Nematoda %

Arthropoda A

n
Piech & Cain, CS109, Stanford University



Events: Interesting Subsets of Outcomes

Experiments have sets of outcomes, containing groups of things that could possibly happen.

* Event: some subset of all possible outcomes that we care about

This is the entire
sample space: all
possible outcomes

—= Here is one event

Piech & Cain, CS109, Stanford University



Sample Space (S) vs. Event Space (E)

Experiment Sample Space Event Event Space

Flipping a coin {Heads, Tails} Getting heads {Heads}

E = S: Event spaces are always subsets of the sample space.

Piech & Cain, CS109, Stanford University



Sample Space (S) vs. Event Space (E)

Experiment Sample Space Event Event Space
Flipping a coin {Heads, Tails} Getting heads {Heads}
Rolling a dice {1, 2, 3, 4,5, 6} At least 3 {3, 4,5, 6}

E = S: Event spaces are always subsets of the sample space.
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Sample Space (S) vs. Event Space (E)

Experiment Sample Space Event Event Space
Flipping a coin {Heads, Tails} Getting heads {Heads}
Rolling a dice {1, 2, 3,4, 5, 6} At least 3 {3, 4,5, 6}

Flipping two coins {{H,H}, {H,T}, {T,H}, {T,T}} One head {{H,T}, {T,H}}

E = S: Event spaces are always subsets of the sample space.
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Sample Space (S) vs. Event Space (E)

Experiment Sample Space Event Event Space
Flipping a coin {Heads, Tails} Getting heads {Heads}
Rolling a dice {1, 2, 3, 4,5, 6} At least 3 {3, 4,5, 6}

Flipping two coins {{H,H}, {H,T}, {T,H}, {T,T}} One head {{H,T}, {T,H}}
# inches of rain x| xeZ x>0} Drought x| xeZ 0<x<2}

E = S: Event spaces are always subsets of the sample space.

Piech & Cain, CS109, Stanford University



Sample Space (S) vs. Event Space (E)

Experiment Sample Space Event Event Space
Flipping a coin {Heads, Tails} Getting heads {Heads}
Rolling a dice {1, 2, 3, 4,5, 6} At least 3 {3, 4,5, 6}

Flipping two coins {{H,H}, {H,T}, {T,H}, {T,T}} One head {{H,T}, {T,H}}
# inches of rain x| xeZ x>0} Drought x| xeZ 0<x<2}
# hours slept {x| xeR,0<x<24} Good sleep x| xeR,7<x<L12}

E = S: Event spaces are always subsets of the sample space.

Piech & Cain, CS109, Stanford University



What is a probability?



[suspense]



A number between 0 and 1



But it’s a number we ascribe meaning to!

P(L

...represents our belief that event E occurs.

Piech & Cain, CS109, Stanford University



Why Are Probabilities Beliefs?




The Formal, Technical Definition of Probability

E) is th b
. T (E) <—n(of ‘:iialsem?;\lzﬂeer
P (E ) — hm event E happens

n— 00 n

Y

n is the number
of trials

“If you repeated an experiment infinite times,

what fraction of the times does E happen?”

Piech & Cain, CS109, Stanford University



The Formal, Technical Definition of Probability

P(E) = lim ")

n— 00 n

Hit: O
Thrown: O

The target
represents event £

n is the number
of darts thrown

P{E} =

Piech & Cain, CS109, Stanford University



The Formal, Technical Definition of Probability

P(E) = lim ")

n— 00 n

Hit: O
Thrown: 1

The target
represents event £

n is the number
of darts thrown

P{E} = 0.00

Piech & Cain, CS109, Stanford University



The Formal, Technical Definition of Probability

P(E) = lim ")

n— 00 n

Hit: 1
Thrown: 2

The target
represents event £

n is the number
of darts thrown

P{E} = 0.50

Piech & Cain, CS109, Stanford University



The Formal, Technical Definition of Probability

P(E) = lim ")

n— 00 n

Hit: 2
Thrown: 3

The target
represents event £

n is the number
of darts thrown

P{E} = 0.75

Piech & Cain, CS109, Stanford University



The Formal, Technical Definition of Probability

P(E) = lim ")

n— 00 n

Hit: 11
Thrown: 24

The target
represents event £

n is the number
of darts thrown

o
P{E} = 0.46

Piech & Cain, CS109, Stanford University



Let’s Simulate How This Formula Works: Coin Flips

1 import random

2

3 # tip: don't go past 10000000

4

5 N_TRIALS = 10000000

6

7 def main():

8 print("N_TRIALS: ", N_TRIALS)

9
10 heads_count = 0

11 for trial in range(N_TRIALS):

12 result = flip_coin()

13 if result == "heads":

14 heads_count = heads_count + 1
15

16 print("Estimated P(heads): ", heads_count / N_TRIALS)
17

18

19 def flip_coin():
20 return random.choice(["heads", "tails"])

Piech & Cain, CS109, Stanford University



Calculating Probabilities From A Dataset

You're given a dataset of historical weather observations.

Day Outcome

1

0O NO U1 B WN

10000

Rainy

Sunny
Rainy
Cloudy
Rainy

Sunny
Sunny
Sunny

Cloudy

Let E be the event that it is Sunny. What is P(E)?

Piech & Cain, CS109, Stanford University



Calculating Probabilities From A Dataset

You're given a dataset of historical weather observations.

Day Outcome

1

0O NO U1 B WN

10000

Rainy

Sunny
Rainy
Cloudy
Rainy

Sunny
Sunny
Sunny

Cloudy

Let E be the event that it is Sunny. What is P(E)?

P(E) =

Q

Q

B
i UE)
n— oo T

Count(FE)
10000

3332
——— ~ 0.3332
10000 0333

Piech & Cain, CS109, Stanford University






The Axioms of Probability Ko'rOV

e Axiom 1:0 < P(E) <1 All probabilities are between 0 and 1

(looks like
Harrison Ford?)

Piech & Cain, CS109, Stanford University



The Axioms of Probability Ko'rOV

e Axiom1l:0<P(E)<1 All probabilities are between 0 and 1

* Axiom2: P(S)=1 The probability of the sample space is 1

(looks like
Harrison Ford?)
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The Axioms of Probability Ko'rov

e Axiom1l:0<P(E)<1 All probabilities are between 0 and 1
* Axiom2: P(S)=1 The probability of the sample space is 1
 Axiom 3: If events £ and F' are mutually exclusive,

P(EUF) = P(E) + P(F)

Probability of event E *or* event F

(looks like
Harrison Ford?)

Piech & Cain, CS109, Stanford University



The Axioms of Probability KO'OFOV

e Axiom1l:0<P(E)<1 All probabilities are between 0 and 1

* Axiom2: P(S)=1 The probability of the sample space is 1

P(E LTJ F) = P(E) + P(F)

Probability of event E *or* event F

* |dentity 3*: P(E“) =1— P(E) Events either happen..or don't (looks like
“not E" Harrison Ford?)

Piech & Cain, CS109, Stanford University



Equally Likely Outcomes

Some sample spaces have equally likely outcomes.
* Coin flip: S = {Head, Tails}
* Roll of 6-sided die: S={1, 2, 3, 4,5, 6}

1
**If** we have equally likely outcomes, then P(each outcome) = —-

5]

Piech & Cain, CS109, Stanford University



Equally Likely Outcomes

Some sample spaces have equally likely outcomes.
* Coin flip: S = {Head, Tails}
* Roll of 6-sided die: S={1, 2, 3, 4,5, 6}

1
**If** we have equally likely outcomes, then P(each outcome) = ro
Therefore, P(E) — outcomes in £ — —|E
all outcomes \S

Piech & Cain, CS109, Stanford University



What Happens If Outcomes Aren’'t Equally Likely?

You’'ve bought a lottery ticket. What is the probability that you win?

Piech & Cain, CS109, Stanford University



What Happens If Outcomes Aren’'t Equally Likely?

You’'ve bought a lottery ticket. What is the probability that you win?

S'= {Win, Lose}

E = {Win}
I 1
0

Piech & Cain, CS109, Stanford University



Sometimes, Unequal Outcomes Are Less Obvious

Flipping two coins {{H,H}, {H,T}, {T,H}, {T,T}} One head {{H,T}, {T,H}}

E = S: Event spaces are always subsets of the sample space.

Piech & Cain, CS109, Stanford University



Sometimes, Unequal Outcomes Are Less Obvious

Option 1 Option 2
Sample Space Event Space Sample Space Event Space
{{H,H}, {H,T}, {T,H}, {T,T}} {{H,T}, {T,H}} {H,H} {T,H}L AT, TH {T,H}}

Piech & Cain, CS109, Stanford University



Sometimes, Unequal Outcomes Are Less Obvious

Option 1 Option 2
Sample Space Event Space Sample Space Event Space
{{H,H}, {H,T}, {T,H}, {T,T}} {{H,T}, {T,H}} {H,H} {T,H}L AT, TH {T,H}}
E| 2 E| 1
— — = = = (| P(1 head) = — = - = 0.
P(1 head) S| " 1 0.5 (1 head) SR 0.33

Which one is right?

Piech & Cain, CS109, Stanford University



To The Code: Simulating Two Coin Flips

O 0o NNO UL B WN B

NNNNRRRRRRBRRRRR
WNRPRSOVWWNOODUDN WNROS

import random
# tip: don't go past 10000000
N_TRIALS = 10000000

def main():
print("N_TRIALS: ", N_TRIALS)

one_head_count = 0
for trial in range(N_TRIALS):

first_result = flip_coin()
second_result = flip_coin()
num_heads = first_result + second_result
if num_heads ==
one_head_count = one_head_count + 1

print("Estimated P(one head): ", one_head_count / N_TRIALS)

def flip_coin():
# 1 means heads, @ means tails
return random.choice([1, 0])

Piech & Cain, CS109, Stanford University



Sometimes, Unequal Outcomes Are Less Obvious

Option 1 Option 2
Sample Space Event Space Sample Space Event Space
{{H,H}, {H,T}, {T,H}, {T,T}} {H,T}, {T,H}} {H,H}, {T,H}L AT, TH {T,H}}
E| 2 E| 1
— — = = =} P(1 head) = — = - = 0.
P(1 head) S| " 4 0.5 (1 head) 5 "3 0.33

Only this way has equally likely

outcomes!
Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

Imagine a few different ways of writing out outcomes.

What ways produce equally likely outcomes?

Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

Outcomes are just
possible sums

{21 3) 4) 5)
6,7,8,9,
10, 11, 12}

Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

Outcomes are just Think of the dice as distinct
possible sums

{21 31 4) 5) 5 5
6) 7) 81 91 o ‘ -

Value Value

10, 11, 12} dice 1 dice 2

Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

Outcomes are just Think of the dice as distinct Think of the dice as indistinct
possible sums

2,3,4,5, 5 5 { 5.5 }

6,789, _ ) —

Value Value Value of Value of
10, 11, 12} dice 1 dice 2 a dice a dice

Piech & Cain, CS109, Stanford University



Sum of Two Dice: Distinct

You roll two 6-sided dice. What is P(sum = 7)?

1,2]
2,2]
3,2]
4,2]
3,2]

6,2]

1,3]
2,3]
3,3]
4.3
3,3

6,3]

1,4
2,4,
3.4,
4,4
5,4,

6,4]

)
2,5,
3.5,
4,5,
3,3

1,6,
2,0,
3,6,
4,0,
3,0,

6,5)

Think of the dice as distinct

S5 S

_ )
Value Value
dice 1 dice 2

6,6]

Piech & Cain, CS109, Stanford University



Sum of Two Dice: Distinct Think of the dice as distinct

You roll two 6-sided dice. What is P(sum = 7)? B 5 5
- J
Value Value
=1

1,17 [1,2]1 [1,3] [1.4] [1,5] [1,6] dicel  dice?

1

2,11 [2,2] [2,3] [2,4] [2,5] [2,6]
3,11 [3,2] [3,3] [3.4] [3,5] [3.6]
4,11 [4,2] [4,3] [4.4] [4,5] [4.6
5
6

5,11 [5.2] [5,3] [5.4] [5,5] [5,6 6
6,11 [6,2] [6,3] [6.4] [6,5] [6,6]} P(E)= —:%:0.166

Piech & Cain, CS109, Stanford University



Sum of Two Dice

e

Outcomes are just Think of the dice as distinct Think of the dice as indistinct
possible sums

2,3,4,5, 5 5 { 5.5 }

You roll two 6-sided dice. What is P(sum = 7)?

6) 7) 81 91 o J -
Value Value Value of Value of
10, 11, 12} dice 1 dice 2 a dice a dice
P(E) = - = 0.09 P(E) = 2 — 0.166
11 36

Piech & Cain, CS109, Stanford University



Sum of Two Dice: Indistinct Think of the dice as indistinct

You roll two 6-sided dice. What is P(sum = 7)? { 5 5 }
)

Value of Value of

S={{1,1} {1,2} {1,3} {1,4} {1,5} {1,6} adice  adice
12,2V 42,3} {24} {2,5} {2,6}

13,3} {3,4} {3,5} {3,6}

14,4 {4,5} {4,6}

15,5} {5,6}

16,6}

Piech & Cain, CS109, Stanford University



Sum of Two Dice: Indistinct

You roll two 6-sided dice. What is P(sum = 7)?

S={{l,1} {1,2} {1,3} {1,4}
2,2} {23} {24

{33} {34}

h4;

1,55
12,5}
13,5]
4,55
19,5

11,6}
12,0}
13,0}
14,6}
19,0}

Think of the dice as indistinct

15,5 |

Value of Value of
a dice a dice

w@}mm:@f3:m5

S|~ 20

Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

e

Outcomes are just Think of the dice as distinct Think of the dice as indistinct
possible sums

2,3,4,5, 5 5 { 5.5 }

6) 7) 81 91 o J -
Value Value Value of Value of
10, 11, 12} dice 1 dice 2 a dice a dice
P(E)—i—OO_Q P(E)—£—0166 P(E)—i—()lf)
1 36 20

Piech & Cain, CS109, Stanford University



Sum of Two Dice

You roll two 6-sided dice. What is P(sum = 7)?

Outcomes are just Think of the dice as distinct Think of the dice as indistinct
possible sums

Piech & Cain, CS109, Stanford University



V)¢
A Literal Toy Problem: Pigs and Cows \39@5%

There are 4 cows and 3 pigs. You choose 3 at random.
What is P(1 pig and 2 cows)?

What is an equally likely sample space here?

u;o‘ - '(‘ -
\-‘) v ™
- 4 Y

Piech & Cain, CS109, Stanford University



The Choice of Sample Space is Yours!  Which choice will lead 1o
equally likely outcomes?

Distinct Indistinct

Unordered

Ordered

Piech & Cain, CS109, Stanford University



The Choice of Sample Space is Yours!  Which choice will lead 1o
equally likely outcomes?

Distinct Indistinct

{cowy, pig,, pigs} {2 cows, 1 pig}

{COW, COW,, COW;} {3 cows}

Unordered

[cowy, pig,, p1gs] [cow, pig, cow]

[cow,, cow,, cow;]  [cow, cow, COW]

Ordered

Piech & Cain, CS109, Stanford University



The Choice of Sample Space is Yours!  Which choice will lead 1o

Distinct

equally likely outcomes?

Indistinct

Unordered

Ordered

{cowy, pig,, pigs}

{COW{, COW,, COW;}

[cow,, p1g,, pigs]
COW{, COW,, COW;]

{2 cows, 1 pig}

{3 cows}

[cow, pi1g, cOW]

[cow, COW, COW]

Piech & Cain, CS109, Stanford University



. . , 6‘6\3\

A Literal Toy Problem: Pigs and Cows O
e

There are 4 cows and 3 pigs. You choose 3 at random. ‘ng't‘)‘f;:fgggf;;zzs

What iS P(l plg and ) COWS)? The answer checker is
looking for the typo

answer, which is 12/35)

Ordered and Distinct Unordered and Distinct
= Pick 3 ordered items: |S| =7 *6*5=210 _ |S|=(7)=35
= Pick pig as either 1st, 2nd, or 3rd item: Z’ 3
|E| =(4*3*3)+(3*4*3)+(3*3*4)=108 " |El =<2)(1)=18

P(1 pig, 2 cows) = 108/210 = 18/35 P(1 pig, 2 cows) = 18/35

Piech & Cain, CS109, Stanford University



Tips For Ensuring Equally Likely Outcomes

Start by imagining individual outcomes.
e Ask yourself: Should objects be distinct or indistinct? Ordered or unordered?
* Distinct usually is correct — you can imagine indistinct objects as distinct

* (Can you find two outcomes that are not equally likely? If so, try a different approach



Tips For Ensuring Equally Likely Outcomes

Start by imagining individual outcomes.
e Ask yourself: Should objects be distinct or indistinct? Ordered or unordered?
* Distinct usually is correct — you can imagine indistinct objects as distinct

* (Can you find two outcomes that are not equally likely? If so, try a different approach

Start with the sample space first, then the event space second.
 Can you imagine a “generative story” for building outcomes? Can you count them?

* Does this generative story produce ALL outcomes you want?



Tips For Ensuring Equally Likely Outcomes

Start by imagining individual outcomes.
e Ask yourself: Should objects be distinct or indistinct? Ordered or unordered?
* Distinct usually is correct — you can imagine indistinct objects as distinct

* (Can you find two outcomes that are not equally likely? If so, try a different approach

Start with the sample space first, then the event space second.
 Can you imagine a “generative story” for building outcomes? Can you count them?

* Does this generative story produce ALL outcomes you want?

At the end, double-check:

* Are your sample space and event space counted the same way? (Ise S ?)



Probability of a Straight Poker Hand

A “straight” hand in poker is any 5 consecutive rank cards of any suit.

What is P(straight)?

What is a
2 3 4 5 6 gener'a‘ri\{e story

for building
Ve ‘et a% WU s

O 99
A ’ o o PP Are ou’rgomes

equally likely?
N NN-
Vo ¢S

Piech & Cain, CS109, Stanford University



Probability of a Straight Poker Hand

A “straight” hand in poker is any 5 consecutive rank cards of any suit.

What is P(straight)?

’S‘ — (52> All possible ways to choose 5 cards from 52
D

Piech & Cain, CS109, Stanford University



Probability of a Straight Poker Hand

A “straight” hand in poker is any 5 consecutive rank cards of any suit.

What is P(straight)?

’S‘ — (52> All possible ways to choose 5 cards from 52
D

4 5 10 choices for the start value, then rest are fixed
El=10-(]

4 choices for the suit, need to choose for each card

Piech & Cain, CS109, Stanford University



Probability of a Straight Poker Hand

A “straight” hand in poker is any 5 consecutive rank cards of any suit.

What is P(straight)?

’S‘ — (52> All possible ways to choose 5 cards from 52
D

4 5 10 choices for the start value, then rest are fixed
E|=10-

1 4 choices for the suit, need to choose for each card
5)
El 10-(%
P(straight) = % = 52(1) ~ 0.0039
(5)

Piech & Cain, CS109, Stanford University



Chip Defect Detection

Your company has manufactured n chips, 1 of which is defective.
k chips are randomly selected from n for testing.
What is the probability that the defective chip is in the k selected chips?

5] =

E] =

Piech & Cain, CS109, Stanford University



Chip Defect Detection

Your company has manufactured n chips, 1 of which is defective.
k chips are randomly selected from n for testing.
What is the probability that the defective chip is in the k selected chips?

s1=(;]

E] =

Piech & Cain, CS109, Stanford University



Chip Defect Detection

Your company has manufactured n chips, 1 of which is defective.
k chips are randomly selected from n for testing.
What is the probability that the defective chip is in the k selected chips?

s1=(;]

E| = Lyn—1 Choose the defective chip,
1) k—1 then choose k - 1 other chips

Piech & Cain, CS109, Stanford University



Chip Defect Detection

Your company has manufactured n chips, 1 of which is defective.
k chips are randomly selected from n for testing.
What is the probability that the defective chip is in the k selected chips?

s1=(;]

£l = 1Y n—1 Choose the defective chip,
£l =],

k—1 then choose k - 1 other chips
_ “Ditn—k)! k
P(defective chipis in k selected chips) = (1) (T]f 1) — (F 1)n('n k) —
(k) El(n—k)!

Piech & Cain, CS109, Stanford University
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Let’s make history




Trailing the dovetail shuffle to its lair — Persi Diaconis



The Annals of Applied Probability
1992, Vol. 2, No. 2, 294-313

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By Dave Baver' anp Persi Diaconis?

Columbia University and Harvard University

We analyze the most commonly used method for shuffling cards. The
main result is a simple expression for the chance of any arrangement after
any number of shuffles. This is used to give sharp bounds on the approach
to randomness: § log, n + # shuffles are necessary and sufficient to mix up
n cards.

Key ingredients are the analysis of a card trick and the determination of
the idempotents of a natural commutative subalgebra in the symmetric
group algebra.

1. Introduction. The dovetail, or riffle shuffie is the most commonly
used method of shuffling cards. Roughly, a deck of cards is cut about in half
and then the two halves are riffled together. Figure 1 gives an example of a
riffle shuffle for a deck of 13 cards.

A mathematically precise model of shuffling was introduced by Gilbert and
Shannon [see Gilbert (1955)] and independently by Reeds (1981). A deck of n
cards is cut into two portions according to a binomial distribution; thus, the
chance that % cards are cut off is (’,:)/2" for 0 < k < n. The two packets are
then riffled together in such a way that cards drop from the left or right heaps
with probability proportional to the number of cards in each heap. Thus, if
there are A and B cards remaining in the left and right heaps, then the
chance that the next card will drop from the left heap is A/(A + B). Such
shuffles are easily described backwards: Each card has an equal and indepen-
dent chance of being pulled back into the left or right heap. An inverse riffle
shuffle is illustrated in Figure 2.

Experiments reported in Diaconis (1988) show that the Gilbert-Shannon—
Reeds (GSR) model is a good description of the way real people shuffie real
cards. It is natural to ask how many times a deck must be shuffled to mix it
up. In Section 3 we prove:

THEOREM 1. If n cards are shuffled m times, then the chance that the deck
is in arrangement T is (7" il oA ) /2™" where r is the number of rising
sequences in .

Rising sequences are defined and illustrated in Section 2 through the
analysis of a card trick. Section 3 develops several equivalent interpretations of
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FiG. 1. A riffle shuffle. (a) We begin with an ordered deck. (b) The deck is divided into two
packets of similar size. (c) The two packets are riffled together. (d) The two packets can still be
identified in the shuffled deck as two distinet * rising seq " of face values.

the GSR distribution for riffle shuffles, including a geometric description as
the motion of n points dropped at random into the unit interval under the
baker’s transformation x —» 2x (mod 1). This leads to a proof of Theorem 1.
Section 3 also relates shuffling to some developments in algebra. A permuta-
tion = has a descent at i if #(i) > w(i + 1). A permutation = has r rising
sequences if and only if =~ ' has r — 1 descents. Let
A= DB 4

= has k descents
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Fic. 2. An inverse riffle shuffle. (a) We begin with a sorted deck. (b) Each card is moved one way
or the other uniformly at random, to "' pull apart” a riffle shuffle and retrieve two packets. (¢) The
two packets are placed in seq e. (d) The two packets can still be identified in the shuffled deck;
they are separated by a “descent” in the face values. This shuffle is inverse to the shuffle
diagrammed in Figure 1,
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Trailing the Dovetail Shuffle to Its Lair {

You and one friend each shuffle your own
decks of 52 cards.

What is the probability that the two decks
are in different orders?
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Trailing the Dovetail Shuffle to Its Lair

You and one friend each shuffle your own
decks of 52 cards.

What is the probability that the two decks
are in different orders?

S| = 52!
E| = 521-1
E| 521—1
P(different) = |\7|| = ~ 5 >0.999999999...  _about 67 "9"s
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Trailing the Dovetail Shuffle to Its Lair {

You and two friends each shuffle your own
decks of 52 cards.

What is the probability that your friends’
decks are in a different order from yours?
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You and two friends each shuffle your own
decks of 52 cards.

What is the probability that your friends’
decks are in a different order from yours?

S| = 52!
|E| = (52!-1)2
, ~|E] (52! —1)7
P(dlfferent) = E = 52'2
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Trailing the Dovetail Shuffle to Its Lair

You shuffle a deck of 52 cards.

What is the probability that the order of
your deck has never been seen before?
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You shuffle a deck of 52 cards.

What is the probability that the order of
your deck has never been seen before?

S| = 521"
|[E| = (52!-1)"
, E] (52! —1)"
P(different) = — =
(different) 5 =l

i

Piech & Cain, CS109, Stanford University



Trailing the Dovetail Shufftle to Its Lair

)
You shuffle a deck of 52 cards. ?

What is the probability that the order of
your deck has never been seen before?
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S| = 52!" Assume 7 billion people have been
|E'| _ (52'_1)71, shuffling cards once a second since
' 52-card decks were invented.

|£| — (52! —1)" For n = 1029,
|S‘ AL P(any deck ever matching yours) < 104/

P(different) =
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Next time: The Core Probability Toolkit™



Have a great weekend!



