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Logistic Regression Prediction

Classification is the task of choosing a value of y that maximizes P(Y|X). Naive Bayes worked by
approximating that probability using the naive assumption that each feature was independent given
the class label.

For all classification algorithms you are given n LLD. training datapoints (x(1), y(D), (x®, y®) |
... (x| y(®) where each “feature” vector X has m = |x(9)| features.



Logistic Regression Prediction

m
P(Y =1|X =x) =0(z) where z =0 + Z 6;x;
j=1



Logistic Regression Prediction

xz xZ

The two parts of this problem are unrelated.

a. Prediction. Suppose you have trained a logistic regression classifier that accepts as
input a data point (x;, x,) and predicts a class label ¥. The parameters of the model are
(8o, 61,6,) = (2,2,—1). On the axes, draw the decision boundary 6”x = 0 and clearly
mark which side of the boundary predicts ¥ = 0 and which side predicts ¥ = 1.



Logistic Regression Prediction

67x can be expanded as 2 + 2x; —x» = 0 because xo = 1 by definition. The prediction is
1 when 67x > 0. For example, the origin (x1,x;) = (0,0) yields 87x = 2, which gives
us the prediction ¥ = 1.

See the graph above, to the right of the original.



Logistic Regression Training
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Logistic Regression Training

initialize 6; = @ for @ = j =m
repeat many times:

gradient[j] = 0 for @ = j = m
for each training example (x, y):
for each @ < j < m:

. . 1
gradient[j] += bv—1_+e_m%]xj

6; += n * gradient[j] for all 0 = j = m



Logistic Regression Training

b. Training. The logistic regression parameter update equation is
n
. T i .
o = 0917 Y [0 - o (69 x9) ] £
i=1

Your training set consists of two data points (xil), y(l)) = (1,1) and (x§2), y(z)) =

(~1,0). Given (egld, 9(;“) — (0,0) and 7 = 0.1, find (egeW, ef;eW).



Logistic Regression Training Solution

First notice that (081‘1, 0‘1’1‘1) = (0, 0) implies that o (HOIde(i)) = 0(0) = 0.5. Therefore,

iV = 0+ 0.1 ([1-0.5] (1) + [0—0.5] (1)) since x_) = 1 by definition
=0+0.1(0.5-0.5) =0

0" = 0+0.1 ([1-0.5] (1) + [0—0.5] (1))
=0+0.1(0.5+0.5) = 0.1



Naive Bayes Example

Suppose we observe two discrete input variables X; and X; X, Y X1 X, Y
X5, and want to predict a single binary output variable
: 1 1 0 3 1 1
Y (which can have values O or 1). We know that the
: : : : 3 0 0 5 0 1
functional forms for the input variables are X; ~ Poi(A4)
. 7 1 0 5 1 1
and X, ~ Ber(p), but we are not given the values of the
: 9 0 0 5 1 1
parameters A or p. We are, however, given a dataset of 9 7 11

training instances (shown at right.)

a. Use Maximum Likelihood Estimation to estimate the parameters A and p in the case
where Y = 0 as well as the case Y = 1. You should have four parameter estimates: A
and po for whenY =0, and 41 and p; for when Y = 1.



Naive Bayes Example

1 20 1 1
AO—Z(1+3+7+9)—Z—5 p0—1(1+0+1+0)_§

1 5 1 4
11:§(3+5+5+5+7):?:5 p1:§(1+0+1+1+1):§



Naive Bayes Example

b. Use Maximum Likelihood Estimation to estimate the probability P(Y = 1).



Naive Bayes Example

b. Use Maximum Likelihood Estimation to estimate the probability P(Y = 1).

P(Y=1)=5/9



Naive Bayes Example

c. You observe the following testing instance: (X1, X2) = (2,0). Using the Naive Bayes
assumption, predict the output Y for the testing instance. For this problem, showing
how you computed your prediction is worth more points than the final answer.



Naive Bayes Example

We predict Y = 0 if the following Naive Bayes inequality holds:

P(Y =1)P(X,
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Since the last inequality is true, that means the first inequality was true, so we predict

Y =0.



Bootstrapping Example

You are the owner of a company that makes delicious

candies. The candy color Y can be red (Y = 0) or blue Counts ‘ Factory 1 ‘ Factory 2
(Y = 1). You have two factories which produce this candy. Y = 0 (red) 260 220
You sample 500 candies from each factory and get the Y =1 (blue) 240 280

table shown at right.

a. (6 points) What are the sample means Y; and ¥, for the two factories?



Bootstrapping Example Solution

_ 260 240
7= 220+ 2221 =04
1= 5990 + 5501 =048
_ 220 280
= Z2200) + 222(1) = 0.56

~ 500 500



Bootstrapping Example

b. (7 points) Suppose you perform bootstrapping with the Factory 1 sample only. What is the
probability that a bootstrap resample from Factory 1 contains at least one blue candy (Y = 1)?
Remember that when bootstrapping you resample with replacement and draw a number of
samples equal to the original sample size.



Bootstrapping Example

The probability that a single candy from the Factory 1 sample is blue, P(Y = 1) = % =

0.48. So the probability that there is at least one blue candy in a bootstrap resample of
size 500 is

1-(1-0.48)1% =1-0.52%



Bivariate Normal Distribution

Let X, Y, and Z be independent Normal variables with means of uy = 4, uy = 5, and
uz = 6 and variances 0')2( = 16, 0'3 = 25, and 0'% = 36. If we assume A = X +7Y
and B = Y + Z are each sums of independent Normal variables, then what is the joint
distribution of A and B? Restated, what is their Bivariate Normal distribution?



Bivariate Normal Distribution

(A’B) ~ N(M’E)’:u =

P +py| o Var(A) Cov(A,B)
uy +uz|’~ [Cov(A,B) Var(B)

Now, Var(A) = Var(X+Y), and because X and Y are 1ndependent Var(A) = Var(X+
Y) = 0'X+0'Y Similarly, Var(B) = Var(Y+Z) = 0'Y+0'Z Also, Cov(A, B) = Cov(X+
Y,Y +Z),but because X, Y, and Z are independent, Cov(A,B) = Cov(X+Y,Y+Z) =
Cov(Y,Y) = 0'1%. Therefore,
9
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Thanks for a great quarter!



