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Agenda
● Conditional probability*

○ Bayes' Theorem*
○ Independence*

● Random variables (more next week)
○ Probability mass function
○ Cumulative distribution function
○ Expectation*

● Applications

* Relevant for HW2



Conditional Probability



Definitions



Bayes' Theorem



Independence



Example Problem 1.1
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: What is the probability that you choose Coin A, i.e. P(A)? 

Hint: You can read off the answer from the problem statement! No calculation is 
needed.

* Problem by Alex Tsun



Example Problem 1.1
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

What is the probability that you choose Coin A, i.e. P(A)? 

Hint: You can read off the answer from the problem statement! No calculation is 
needed.

Solution: 0.3333



Example Problem 1.2
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: Given that you choose Coin A, what is the probability you get heads, i.e. 
P(H|A)? 

Hint: You can read off the answer from the problem statement! No calculation is 
needed.



Example Problem 1.2
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: Given that you choose Coin A, what is the probability you get heads, i.e. 
P(H|A)? 

Hint: You can read off the answer from the problem statement! No calculation is 
needed.

Solution: 0.5



Example Problem 1.3
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: Use one of the definitions from the slides to calculate the probability you 
get heads, i.e. P(H). Hint: Multiple cases. 



Example Problem 1.3
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: Use one of the definitions from the slides to calculate the probability you 
get heads, i.e. P(H). Hint: Multiple cases. 

Solution: By Law of total probability 

P(H) = P(H | A) * P(A) + P(H|B) * P(B) + P(H | C) * P(C) 

= 0.5 * ⅓  + 0.2 * ⅓  + 0.9 * ⅓ =  1.6/3 = 0.5333

Key idea: law of total 
probability



Example Problem 1.4
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: Use one of the definitions from the slides to calculate the probability that 
you chose the Coin A, given that you got heads, i.e. P(A|H).



Example Problem 1.4 Solution
Consider a scenario in which you have three coins. Coin A comes up heads with 
probability 0.5, Coin B with probability 0.2, and Coin C with probability 0.9. You 
choose a coin randomly with equal probability for all three.

Problem: Use one of the definitions from the slides to calculate the probability that 
you chose the Coin A, given that you got heads, i.e. P(A|H).

Solution: By Bayes Theorem, 

P(A|H) = P(H | A) * P(A) / P(H) 

= 0.5 * ⅓ / (0.5 * ⅓  + 0.2 * ⅓  + 0.9 * ⅓) 

= 0.5 * ⅓ / 0.533 = (0.3125)

Key idea: Bayes' Theorem



Example Problem 2 [Spring 2019 HW2]
A robot can be in exactly one of two locations: L1 or L2. The probability that the 
robot is in location L1 is P(L1) and the probability it is in location L2 is P(L2). 
Based on all past observations, the robot thinks that there is a 0.8 probability it is 
in L1 and a 0.2 probability that it is in L2.

The robot’s vision algorithm detects a window, and although there is only a 
window in L2, it can’t conclude that it is in fact in L2 because its image recognition 
algorithm is not perfect. 

The probability of observing a window given there is no window at its location is 
0.2 and the probability of observing a window given there is a window is 0.9. After 
incorporating the observation of a window, what is the robot’s new values for P(L1) 
and P(L2)?



Example Problem 2 Solution
Let O be the event that we observe a window. 

Problem Goal: "After incorporating the observation of a window, what is the 
robot’s new values for P(L1) and P(L2)?" 

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution
Let O be the event that we observe a window. 

Problem Goal: "After incorporating the observation of a window, what is the 
robot’s new values for P(L1) and P(L2)?" 

i.e. calculate P(L1 | O) and P(L2 | O).

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

"A robot can be in exactly one of two locations: L1 or L2."

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

"A robot can be in exactly one of two locations: L1 or L2."

1. Since L1 and L2 are the only locations, L1 = L2C and vice versa.

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

"Based on all past observations, the robot thinks that there is a 0.8 probability it 
is in L1 and a 0.2 probability that it is in L2."

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

"Based on all past observations, the robot thinks that there is a 0.8 probability it 
is in L1 and a 0.2 probability that it is in L2."

2. P(L1) = 0.8 and P(L2) = 0.2.

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

"The probability of observing a window given there is no window at its location is 
0.2 and the probability of observing a window given there is a window is 0.9." 

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

"The probability of observing a window given there is no window at its location is 
0.2 and the probability of observing a window given there is a window is 0.9." 

3. Therefore, P(O|L1) = 0.2  and P(O|L2) = 0.9. 

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution

Let O be the event that we observe a window. 

Problem Goal: Calculate P(L1 | O) and P(L2 | O).

Key information in the problem: 

1. Since L1 and L2 are the only locations, L1 = L2C and vice versa.

2. P(L1) = 0.8 and P(L2) = 0.2.

3. Therefore, P(O|L1) = 0.2  and P(O|L2) = 0.9. 

Key idea: translate paragraph 
to mathematical notation



Example Problem 2 Solution
Use Bayes’ theorem. 

Key idea: Bayes' Theorem

(0.8) (0.2)

= (0.2) * (0.8) / (0.2 * 0.8 + 0.9 * 0.2)

(0.8)



Random Variables



Random Variables
● A random variable (RV) is a variable that probabilistically takes on different 

values.
● The probability mass function (PMF) of a random variable is a function that 

maps possible outcomes of a random variable to the corresponding probabilities.

● The cumulative distribution function (CDF) of a random variable X is a 
function F specified as F(a) = P(X ≤ a), the probability that X takes on a value 
less than or equal to some value a. 



Expectation



Preview for week 3 and 4 in class
● Common random variables

○ Bernoulli RV
○ Binomial RV
○ Geometric RV
○ Poisson RV
○ Normal RV
○ Others!

● Properties of RVs
○ PDF, CDF, E[X], applications



Applications



Applications
● Naive bayes' model: a machine learning model (end of course)
● Classification machine learning problems
● Healthcare and biology

○ Punnett squares (see HW2)



See you next Tuesday!



Example Problem 2 [Midterm Spring 2020]
A home robot has two different sensors for motion detection. If there is a moving 
object, sensor V (video camera) will detect motion with probability 0.95, and 
sensor L (laser) will detect motion with probability 0.8. If there is no moving object, 
there is a 0.1 probability that sensor V will detect motion (even though there is no 
object), and a 0.05 probability that sensor L will detect motion.

Based on empirical evidence, the probability that there is a moving object is 0.7. 
Note that these sensors use independent detection algorithms to identify motion, 
so that conditioned on there being a moving object (or not), the events of 
detecting motion (or not) for each Sensor is independent.

Problem: Given that there is a moving object and that sensor V does not detect 
motion, what is the probability that sensor L detects motion? Give a numerical 
answer.


