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Agenda

Parameter Estimation”
Beta Distribution*
Naive Bayes Classifier*
Applications

* Relevant for HW6



Parameter Estimation



Parameters and MLE

Suppose xi,...,x, are i.i.d. (independent and identically distributed) values sampled from some
distribution with density function f(x|8), where 8 is unknown. Recall that the likelihood of the
data is

L(6) = f (1,32, 3al6) = | | £ (xil6)
i=1
Recall we solve an optimization problem to find § which maximizes L(6), i.e., § = argmax, L(6).

1. Write an expression for the log-likelihood, LL(6) = log L(6).
2. Why can we optimize LL(6) rather than L(8)?

3. Why do we optimize LL(68) rather than L(6)?



Example Problem Solution

1. LL(0) = X7, log f(x;|6)

2. The logarithm (for bases > 1) is a monotonically increasing function. This means that if
f(a) > f(b), then log(f(a)) > log(f(b)), so the arg max function is preserved across a
logarithmic transformation, i.e., arg max L(0) = arg max LL(6).

3. Logs turn products into sums, which makes taking the derivative for maximization or
minimization much simpler.




Beta Random Variable



Beta Distribution

The Probability Density Function (PDF) for a Beta X ~ Beta(a, b) is:

1 _a-1 b-1 1
1- fO<x<l1
f(X=x)= {g(a,b)x (1=x) ' * where B(a, b) = / x4 11 = x)Pldx
0
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Beta priors and posteriors for binomial random
variables

1. Suppose you have a coin where you have no prior belief on its true probability of heads p.
How can you model this belief as a Beta distribution?

2. Suppose you have a coin which you believe is fair, with “strength” . That is, pretend you’ve
seen a heads and « tails. How can you model this belief as a Beta distribution?

3. Now suppose you take the coin from the previous part and flip it 10 times. You see 8 heads
and 2 tails. How can you model your posterior belief of the coin’s probability of heads?



Beta Distribution Solution

1. Beta(1, 1) is a uniform prior, meaning that prior to seeing the experiment, all probabilities
of heads are equally likely.

2. Beta(a + 1, @ + 1). This is our prior belief about the distribution.

3. Beta(a +9,a +3)




Naive Bayes Classifier



Classification Task

e Given a set of data about historical features, predict the label of a new set of

features.
e Examples: given a set of cat and dog images. Build a model to predict

whether a new image is a cat or a dog.



Naive Bayes Binary Classification Training

The objective in training is to estimate the probabilities P(Y) and P(X;|Y) forall 0 < j < m
features.
Using an MLE estimate:

(# training examples where X; = x; and Y = y)

P(X;=xjlY=y) =
(Xj = x y) (training examples where Y = y)



Naive Bayes Binary Classification Training

The objective in training is to estimate the probabilities P(Y) and P(X;|Y) forall 0 < j < m
features.
Using an MLE estimate:

N # training examples where X; = x; and Y =
BP(X; =xj|Y = y) = ( g 1Y j=Xj y)

(training examples where Y = y)
Using a Laplace MAP estimate:

(# training examples where X; =x;andY = y) + 1

P(Xj=xjlY =y) =
(Xj = x;l y) (training examples where Y = y) + 2



Naive Bayes Binary Classification Training

The objective in training is to estimate the probabilities P(Y) and P(X;|Y) forall 0 < j < m
features.
Using an MLE estimate:

N # training examples where X; = x; and Y =
BP(X; =xj|V = y) = ( g P j=Xj y)

(training examples where Y = y)
Using a Laplace MAP estimate:

(# training examples where X; =x;andY =y) + 1

P(Xj=xlY =y) =
(Xj = x;l y) (training examples where Y = y) + 2

Estimating P(Y = y) is also straightforward. Using MLE estimation:

(# training examples where Y = y)

PY=y)=
¥ =) (training examples)



Naive Bayes Binary Classification Prediction

For an example with X = [x,x2,...,X,;], we can make a corresponding prediction for Y. We use
hats (e.g., P or Y) to symbolize values which are estimated.

Y = g(x) = argmax P(Y)P(X|Y) This is equal to argmax P(Y = y|X)
ye{0,1}
m
= argmax P(Y = y) l—[ ﬁ(Xj =x;|Y =y) Naive Bayes assumption
yE{O,l} ]:1
m

= argmax log P(Y = y) + Z log P(X; =x;|Y =y) Log version for numerical stability
yE{O,l} j=1



Naive Bayes Example

Say we have thirty examples of people’s preferences (like or not) for Star Wars, Harry Potter and
Pokemon. Each training example has X;, X, and Y where X; is whether or not the user liked Star
Wars, X, is whether or not the user liked Harry Potter and Y is whether or not the user liked
Pokemon. For the 30 training examples, the MAP and MLE estimates are as follows:

X4 1 MLE X, 1 MLE # MLE
Y estimates Y estimates est.
0 10 | 0.23 0.77 0 8 |0.38 0.62 13 | 0.43
1 13 | 0.24 0.76 1 10 | 0.41 0.59 17 | 0.57




Naive Bayes Example

Say we have thirty examples of people’s preferences (like or not) for Star Wars, Harry Potter and
Pokemon. Each training example has X;, X, and Y where X; is whether or not the user liked Star
Wars, X; is whether or not the user liked Harry Potter and Y is whether or not the user liked
Pokemon. For the 30 training examples, the MAP and MLE estimates are as follows:

Y S 0 1 est';n n%aEtes b § N 0 L est':lI n%aEtes Y * l:l;.f
0 3 10 | 0.23 0.77 0 S 8 /038 0.62 0 13 | 0.43
1 4 13 | 0.24 0.76 1 7 10 | 0.41 0.59 1 17 | 0.57
X4 1 MAP X, 1 MAP 4 MAP

Y estimates Y estimates est.
0 10 | 0.27 0.73 0 8 |04 06 13 | 0.45
1 13 10.26 0.74 1 10 | 042 0.58 17 | 0.55




Naive Bayes Example

For a new user who likes Star Wars (X1 = 1) but not Harry Potter (X2 = 0), do you predict that they
will like Pokemon?



Naive Bayes Example

For a new user who likes Star Wars (X; = 1) but not Harry Potter (X, = 0), do you predict that they
will like Pokemon? Yes! Y = 1 leads to a larger value in the argmax term:

if Y =0:P(X; =1|Y =0)P(X, =0]Y =0)P(Y =0) = (0.77)(0.38)(0.43) ~ 0.126
ifY =1:P(X; =1Y = 1)P(X, =0|Y = 1)P(Y = 1) = (0.76)(0.41)(0.57) ~ 0.178



Applications

e C(Classification problems occur in many disciplines
o  Computer Vision (CS131, CS231N)

Deep Learning (CS230)

Natural Language Processing (CS124, CS224N)

General Game Playing (CS227B)

Biocomputing (CS274)

o O O O



See you next Tuesday!



