Welcome to CS109A

Gili Rusak

Agenda

- Parameter Estimation*
- Beta Distribution*
- Naive Bayes Classifier*
- Applications

^{*} Relevant for HW6

Parameter Estimation

Parameters and MLE

Suppose x_1, \ldots, x_n are i.i.d. (independent and identically distributed) values sampled from some distribution with density function $f(x|\theta)$, where θ is unknown. Recall that the likelihood of the data is

$$L(\theta) = f(x_1, x_2, \dots, x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$$

Recall we solve an optimization problem to find $\hat{\theta}$ which maximizes $L(\theta)$, i.e., $\hat{\theta} = \arg \max_{\theta} L(\theta)$.

- 1. Write an expression for the log-likelihood, $LL(\theta) = \log L(\theta)$.
- 2. Why can we optimize $LL(\theta)$ rather than $L(\theta)$?
- 3. Why do we optimize $LL(\theta)$ rather than $L(\theta)$?

Example Problem Solution

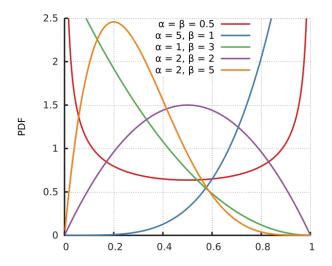
- 1. $LL(\theta) = \sum_{i=1}^{n} \log f(x_i|\theta)$
- 2. The logarithm (for bases > 1) is a monotonically increasing function. This means that if f(a) > f(b), then $\log(f(a)) > \log(f(b))$, so the arg max function is preserved across a logarithmic transformation, i.e., $\arg\max L(\theta) = \arg\max LL(\theta)$.
- 3. Logs turn products into sums, which makes taking the derivative for maximization or minimization much simpler.

Beta Random Variable

Beta Distribution

The Probability Density Function (PDF) for a Beta $X \sim Beta(a, b)$ is:

$$f(X = x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases} \quad \text{where } B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$$



Beta priors and posteriors for binomial random variables

- 1. Suppose you have a coin where you have no prior belief on its true probability of heads p. How can you model this belief as a Beta distribution?
- 2. Suppose you have a coin which you believe is fair, with "strength" α . That is, pretend you've seen α heads and α tails. How can you model this belief as a Beta distribution?
- 3. Now suppose you take the coin from the previous part and flip it 10 times. You see 8 heads and 2 tails. How can you model your posterior belief of the coin's probability of heads?

Beta Distribution Solution

- 1. Beta(1, 1) is a uniform prior, meaning that prior to seeing the experiment, all probabilities of heads are equally likely.
- 2. Beta($\alpha + 1$, $\alpha + 1$). This is our prior belief about the distribution.
- 3. Beta(α + 9, α + 3)

Naive Bayes Classifier

Classification Task

- Given a set of data about historical features, predict the label of a new set of features.
- Examples: given a set of cat and dog images. Build a model to predict whether a new image is a cat or a dog.

Naive Bayes Binary Classification Training

The objective in training is to estimate the probabilities P(Y) and $P(X_j|Y)$ for all $0 < j \le m$ features.

Using an MLE estimate:

$$\hat{P}(X_j = x_j | Y = y) = \frac{\text{(# training examples where } X_j = x_j \text{ and } Y = y)}{\text{(training examples where } Y = y)}$$

Naive Bayes Binary Classification Training

The objective in training is to estimate the probabilities P(Y) and $P(X_j|Y)$ for all $0 < j \le m$ features.

Using an MLE estimate:

$$\hat{P}(X_j = x_j | Y = y) = \frac{\text{(# training examples where } X_j = x_j \text{ and } Y = y)}{\text{(training examples where } Y = y)}$$

Using a Laplace MAP estimate:

$$\hat{P}(X_j = x_j | Y = y) = \frac{\text{(# training examples where } X_j = x_j \text{ and } Y = y) + 1}{\text{(training examples where } Y = y) + 2}$$

Naive Bayes Binary Classification Training

The objective in training is to estimate the probabilities P(Y) and $P(X_j|Y)$ for all $0 < j \le m$ features.

Using an MLE estimate:

$$\hat{P}(X_j = x_j | Y = y) = \frac{\text{(# training examples where } X_j = x_j \text{ and } Y = y)}{\text{(training examples where } Y = y)}$$

Using a Laplace MAP estimate:

$$\hat{P}(X_j = x_j | Y = y) = \frac{\text{(# training examples where } X_j = x_j \text{ and } Y = y) + 1}{\text{(training examples where } Y = y) + 2}$$

Estimating P(Y = y) is also straightforward. Using MLE estimation:

$$\hat{P}(Y = y) = \frac{\text{(# training examples where } Y = y)}{\text{(training examples)}}$$

Naive Bayes Binary Classification Prediction

For an example with $\mathbf{X} = [x_1, x_2, \dots, x_m]$, we can make a corresponding prediction for Y. We use hats (e.g., \hat{P} or \hat{Y}) to symbolize values which are estimated.

$$\hat{Y} = g(\mathbf{x}) = \underset{y \in \{0,1\}}{\operatorname{argmax}} \, \hat{P}(Y) \hat{P}(\mathbf{X}|Y)$$
 This is equal to $\underset{y \in \{0,1\}}{\operatorname{argmax}} \, \hat{P}(Y = y|\mathbf{X})$ = $\underset{y \in \{0,1\}}{\operatorname{argmax}} \, \hat{P}(Y = y) \prod_{j=1}^{m} \hat{P}(X_j = x_j|Y = y)$ Naïve Bayes assumption = $\underset{y \in \{0,1\}}{\operatorname{argmax}} \, \log \hat{P}(Y = y) + \sum_{j=1}^{m} \log \hat{P}(X_i = x_j|Y = y)$ Log version for numerical stability

Say we have thirty examples of people's preferences (like or not) for Star Wars, Harry Potter and Pokemon. Each training example has X_1 , X_2 and Y where X_1 is whether or not the user liked Star Wars, X_2 is whether or not the user liked Harry Potter and Y is whether or not the user liked Pokemon. For the 30 training examples, the MAP and MLE estimates are as follows:

Y X1	0	1	MLE estimates	Y X ₂	0	1	MLE estimates	Y	#	MLE est.
0	3	10	0.23 0.77	0	5	8	0.38 0.62	0	13	0.43
1	4	13	0.24 0.76	1	7	10	0.41 0.59	1	17	0.57

Say we have thirty examples of people's preferences (like or not) for Star Wars, Harry Potter and Pokemon. Each training example has X_1 , X_2 and Y where X_1 is whether or not the user liked Star Wars, X_2 is whether or not the user liked Harry Potter and Y is whether or not the user liked Pokemon. For the 30 training examples, the MAP and MLE estimates are as follows:

X ₁	0	1	MLE estimates	Y X2	0	1	MLE estimates	Y	#	MLE est.
0	3	10	0.23 0.77	0	5	8	0.38 0.62	0	13	0.43
1	4	13	0.24 0.76	1	7	10	0.41 0.59	1	17	0.57

X ₁	0	1	MAP estimates	X ₂	0	1	MAP estimates	Y	#	MAP est.
0	3	10	0.27 0.73	0	5	8	0.4 0.6	0	13	0.45
1	4	13	0.26 0.74	1	7	10	0.42 0.58	1	17	0.55

For a new user who likes Star Wars (X1 = 1) but not Harry Potter (X2 = 0), do you predict that they will like Pokemon?

For a new user who likes Star Wars $(X_1 = 1)$ but not Harry Potter $(X_2 = 0)$, do you predict that they will like Pokemon? Yes! Y = 1 leads to a larger value in the argmax term:

if
$$Y = 0$$
: $\hat{P}(X_1 = 1|Y = 0)\hat{P}(X_2 = 0|Y = 0)\hat{P}(Y = 0) = (0.77)(0.38)(0.43) \approx 0.126$
if $Y = 1$: $\hat{P}(X_1 = 1|Y = 1)\hat{P}(X_2 = 0|Y = 1)\hat{P}(Y = 1) = (0.76)(0.41)(0.57) \approx 0.178$

Applications

- Classification problems occur in many disciplines
 - Computer Vision (CS131, CS231N)
 - Deep Learning (CS230)
 - Natural Language Processing (CS124, CS224N)
 - General Game Playing (CS227B)
 - Biocomputing (CS274)

See you next Tuesday!