
Lecture 02: File Systems, APIs, and System CallsLecture 02: File Systems, APIs, and System Calls

Principles of Computer Systems

Spring 2019

Stanford University

Computer Science Department

Lecturer: Chris Gregg

PDF of this presentation
1

https://web.stanford.edu/class/archive/cs/cs110/cs110.1196/static/lectures/02-FileSystems

umaskumask Redux Redux
On Monday, we introduced the idea of file permissions, and we discussed , which is a default permissions set for

creating files in a directory. Based on the questions after class, I wanted to clear up some things about it.

The umask is set for a user in the shell, and when a program is run it inherits the user's umask settings. The user

can adjust the default umask with a terminal command:

umask

cgregg@myth51:~$ umask
0077
cgregg@myth51:~$ umask 0066
cgregg@myth51:~$ umask
0066
cgregg@myth51:~$

For reasons known to the original creators, the bits that are set in the umask disable creating permissions for

the permissions bits that a program is attempting to set. Example: let's say a program attempts to set the
following permissions:
rw­rw­rw­ This is a permission set of binary 110110110, or octal 0666, meaning that the user, group,

and other fields are all set to rw.

If the user's umask is set to 0077, or 000111111, then all of the permissions for the group and other fields will

not be set, even if a program tries to set them when creating a file (unless the umask is changed in the program
itself).
You can think of the mask being applied with a bitmask as follows (using our example):

attempt &~umask = 110110110 &~000111111 = 110110110 & 111000000 = 110000000
So, the permissions that will be set will be 110000000. Example on next slide.

2

https://en.wikipedia.org/wiki/Umask

umaskumask Redux Redux
Example:

// open_ex_minimal.c
// attempts to create a file with permissions 0644
int main(int argc, char *argv[]) {
 if (argc == 1) {
 printf("Usage: %s filename\n",argv[0]);
 return -1;
 }
 // attempt to set permissions to rw-r--r--
 int file_descriptor = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);
 close(file_descriptor);
 return 0;
}

cgregg@myth51$./open_ex_minimal test_file1
cgregg@myth51$ ls -l test_file1
-rw------- 1 cgregg operator 0 Apr 3 06:44 test_file1

If a user changes the umask at the terminal, the program will have different behavior:

$ umask 0000
cgregg@myth51$./open_ex_minimal test_file2
cgregg@myth51$ ls -l test_file2
-rw-r--r-- 1 cgregg operator 0 Apr 3 06:48 test_file2

$ umask 0477
cgregg@myth51$./open_ex_minimal test_file3
cgregg@myth51$ ls -l test_file3
--w------- 1 cgregg operator 0 Apr 3 06:49 test_file3

3

Assignment 1: Six Degrees of Kevin BaconAssignment 1: Six Degrees of Kevin Bacon
The first assignment is meant to get you up to speed on the coding you need to be able to do for
the class. It is a mix of CS106B and CS107 ideas. Please re-download if you have already
downloaded the handout (there were minor changes that affected copy/pasting the
examples)
The program you will write is able to determine how to link two film actors through a series of
films they have been in. Examples:

You can see if an actor is in the database as follows:

cgregg@myth65$./search "Meryl Streep" "Jack Nicholson (I)"
Meryl Streep was in "Close Up" (2012) with Jack Nicholson (I).

cgregg@myth65$./imdbtest "Meryl Streep"

 Meryl Streep has starred in 104 films, and those films are:

 1.) 100 Years (2017)
 2.) A Century of Cinema (1994)

...
 4428.) Zoe Sternbach-Taubman
 4429.) Zvonimir Hace

cgregg@myth65$

Be careful: because some actors have the same
name, they may not be in the database without a
roman numeral. To check an actor, look them up at
imdb.com, and you will see a roman numeral in
parentheses next to their name. E.g. for :Madonna

Note that you would
search for Madonna as
follows:

$./imdbtest "Madonna (I)"

4

https://www.imdb.com/name/nm0000187/

Assignment 1: Six Degrees of Kevin BaconAssignment 1: Six Degrees of Kevin Bacon
There are two files that link movie actors to the movies they have acted in. Both have been
created in a format that allows fast binary searching. The actorFile is built on a data structure
that allows binary searching for actor names, and the movieFile is built on a data structure
that allows binary searching for movie titles. This is where the CS107 stuff comes in: you
need to understand the file formats exactly and you need to use pointer arithmetic to parse
them.
You will also use C++ standard template library (STL) classes to do the binary searching in
these files. Specifically, you will use the function from the STL. The function is

a bit subtle -- you need to take some time to understand how it works. For example, it takes
an iterator, which in our case is just a pointer to the data. Also, when searching, it returns an
"Iterator pointing to the first element that is not less than value, or last if no such element is
found." (see the link above for details).
Once you have worked out how to search for data and once you have compiled a data
structure for the specific actors your program's user is searching for, you need to perform a
breadth-first search algorithm to link the two together. This is the CS106B part of the
assignment.

lower_bound

5

https://en.cppreference.com/w/cpp/algorithm/lower_bound

Assignment 1: Lambda FunctionsAssignment 1: Lambda Functions
To go back to the function for a moment: part of the assignment says, "I am
requiring that you use the STL lower_bound algorithm to perform these binary searches, and that
you use C++ lambdas (also known as anonymous functions with capture clauses) to provide
nameless comparison functions that lower_bound can use to guide its search."
What is this about a "C++ lambda"? This is likely a new concept for you, so let's discuss it.
A lambda function is a function that is usually placed inline as a parameter to another
function, which expects the parameter to itself be a function (I N C E P T I O N)
Before we talk about lambdas specifically, let's back up a bit and recall what it means to pass
around function pointers (CS107 stuff)

Function pointers provide flexibility. Recall the qsort function:

lower_bound

void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

The last parameter is a function pointer that defines the comparison function qsort
will use when it sorts an array.
The caller of the qsort function passes in the function pointer, and qsort itself simply
calls it, expecting an int return value. qsort does not care about the details of how the

comparison is done, it just relies on it to provide a legitimate result.
6

https://en.cppreference.com/w/cpp/algorithm/lower_bound

Let's look at an example program: (full program)here
int add(int x, int y) { return x + y; }
int sub(int x, int y) { return x - y; }

void modifyVec(vector<int> &vec, int val, function<int(int, int)>op) {
 for (int &v : vec) {
 v = op(v,val);
 }
}

int main(int argc, char *argv[]) {
 string opStr = string(argv[1]);
 int val = atoi(argv[2]);

 vector<int> vec = {1, 2, 3, 4, 5, 10, 100, 1000};
 printVec("Original",vec);
 cout << "Performing " << opStr << " on vector with value " << val << endl;

 if (opStr == "add") modifyVec(vec, val, add);
 else if (opStr == "sub") modifyVec(vec, val, sub);

 printVec("Result",vec);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

./fun_pointer add 12
Original: 1, 2, 3, 4, 5, 10, 100, 1000,
Performing add on vector with value 12
Result: 13, 14, 15, 16, 17, 22, 112, 1012,

We've created two functions,
add and sub, that get called by
modifyVec.
The function<int(int,
int)op parameter is a C++

way of creating a function
pointer.
Note on lines 18 and 19, the
add and sub functions do not
get called immediately -- they
get called when modifyVec gets
around to calling them.

Assignment 1: Lambda FunctionsAssignment 1: Lambda Functions

7

https://web.stanford.edu/class/cs110/examples/lambda/fun_pointer.cc

With a lambda function, we can replace the add and sub functions with an inline function (full
program).here

void modifyVec(vector<int> &vec, int val, function<int(int, int)>op) {
 for (int &v : vec) {
 v = op(v,val);
 }
}

int main(int argc, char *argv[]) {
 string opStr = string(argv[1]);
 int val = atoi(argv[2]);

 vector<int> vec = {1, 2, 3, 4, 5, 10, 100, 1000};
 printVec("Original", vec);
 cout << "Performing " << opStr << " on vector with value " << val << endl;

 if (opStr == "add") modifyVec(vec, val, [](int x, int y) {
 return x + y;
 });
 else if (opStr == "sub") modifyVec(vec, val, [](int x, int y) {
 return x - y;
 });

 printVec("Result", vec);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Lines 16-18 and 19-21 are
where the magic happens.
A lambda function has the
following signature:

[captures] (params) { body }

We will talk about captures in
a moment, but for now, see
that the params and the
body comprise a similar form
to our original functions for
add and sub.

Assignment 1: Lambda FunctionsAssignment 1: Lambda Functions

8

https://web.stanford.edu/class/cs110/examples/lambda/lambda.cc

So a lambda function is just an inline function. But, it can be more than that. We may want to
allow the function to utilize variables from the scope where the function is being called. Let's
say we changed modifyVec from this:
void modifyVec(vector<int> &vec, int val, function<int(int, int)>op) {
 for (int &v : vec) {
 v = op(v,val);
 }
}

1
2
3
4
5

Assignment 1: Lambda FunctionsAssignment 1: Lambda Functions

void modifyVec(vector<int> &vec, function<int(int)>op) {
 for (int &v : vec) {
 v = op(v);
 }
}

1
2
3
4
5

To this:

In other words, now we want the function that calls modifyVec to also handle the value we
are updating by. This would be difficult to accomplish with a regular function pointer.
But, with a lambda function, it is possible.

9

Here is our new version, with a modified lambda function:
void modifyVec(vector<int> &vec, std::function<int(int v)>op) {
 for (int &v : vec) {
 v = op(v);
 }
}

int main(int argc, char *argv[]) {
 string opStr = string(argv[1]);
 int val = atoi(argv[2]);

 vector<int> vec = {1, 2, 3, 4, 5, 10, 100, 1000};
 printVec("Original", vec);
 cout << "Performing " << opStr << " on vector with value " << val << endl;

 if (opStr == "add") modifyVec(vec, [val](int x) {
 return x + val;
 });
 else if (opStr == "sub") modifyVec(vec, [val](int x) {
 return x - val;
 });

 printVec("Result", vec);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Assignment 1: Lambda FunctionsAssignment 1: Lambda Functions

In this version, we have
captured the variable val,

using the bracket notation.
This allows the lambda
function, when it is called
(remember, it isn't called
immediately) to use val.

There are multiple ways to
capture variables -- often, we
want to capture them by
reference. If we wanted to
capture val as a reference,

we would call it as follows:
 if (opStr == "add") modifyVec(vec, [&val](int x) {
 return x + val;
 });

10

Some more comments on lambda functions:

Lambda functions are critical when we have C++ classes, too -- without lambdas, you can't
call class functions from a non-class function (this is a key reason why it is necessary for the
lower_bound function for assignment 1!)

If you want to capture all class variables, you can use [this] as a capture clause.

You can capture multiple variables in a capture clause, e.g., [this, val, &myVec]

Basically, any in-scope variable you want to use in the lambda function must be captured in
the capture clause.
We will use lambda functions a great deal when we get to threading, so learn it well on this
assignment.

Assignment 1: Lambda FunctionsAssignment 1: Lambda Functions

11

Back to file systems: Implementing Back to file systems: Implementing copycopy to emulate to emulate cpcp

The read system call will block until the requested number of bytes have been read. If the return value is 0, there are no

more bytes to read (e.g., the file has reached the end, or been closed).
If write returns a value less than count, it means that the system couldn't write all the bytes at once. This is why the

while loop is necessary, and the reason for keeping track of bytesWritten and bytesRead.

You should close files when you are done using them, although they will get closed by the OS when your program ends.
We will use valgrind to check if your files are being closed.

int main(int argc, char *argv[]) {
 int fdin = open(argv[1], O_RDONLY);
 int fdout = open(argv[2], O_WRONLY | O_CREAT | O_EXCL, 0644);
 char buffer[1024];
 while (true) {
 ssize_t bytesRead = read(fdin, buffer, sizeof(buffer));
 if (bytesRead == 0) break;
 size_t bytesWritten = 0;
 while (bytesWritten < bytesRead) {
 bytesWritten += write(fdout, buffer + bytesWritten, bytesRead - bytesWritten);
 }
 }
 close(fdin);
 close(fdout)
 return 0;
}

12

Pros and cons of file descriptors over Pros and cons of file descriptors over FILEFILE pointers and C++ pointers and C++ iostreamiostreamss
The file descriptor abstraction provides direct, low level access to a stream of data without the fuss of data structures or
objects. It certainly can't be slower, and depending on what you're doing, it may even be faster.
FILE pointers and C++ iostreams work well when you know you're interacting with standard output, standard input,

and local files.

They are less useful when the stream of bytes is associated with a network connection.
FILE pointers and C++ iostreams assume they can rewind and move the file pointer back and forth freely, but

that's not the case with file descriptors associated with network connections.

File descriptors, however, work with read and write and little else used in this course.

C FILE pointers and C++ streams, on the other hand, provide automatic buffering and more elaborate formatting

options.

13

Implementing Implementing tt to emulate to emulate teetee
Overview of tee

The tee program that ships with Linux copies everything from standard input to standard output, making zero or

more extra copies in the named files supplied as user program arguments. For example, if the file contains 27 bytes—
the 26 letters of the English alphabet followed by a newline character—then the following would print the alphabet
to standard output and to three files named one.txt, two.txt, and three.txt.

$ cat alphabet.txt | ./tee one.txt two.txt three.txt
abcdefghijklmnopqrstuvwxyz
$ cat one.txt
abcdefghijklmnopqrstuvwxyz
$ cat two.txt
abcdefghijklmnopqrstuvwxyz
$ diff one.txt two.txt
$ diff one.txt three.txt
$

If the file vowels.txt contains the five vowels and the newline character, and tee is invoked as follows, one.txt
would be rewritten to contain only the English vowels.

$ cat vowels.txt | ./tee one.txt
aeiou
$ cat one.txt
aeiou

Full implementation of our own t executable, with error checking, is .

Implementation replicates much of what copy.cdoes, but it illustrates how you can use low-level I/O to

manage many sessions with multiple files. The implementation inlined across the next two slides omit error
checking.

right here

14

http://cs110.stanford.edu/examples/filesystems/t.c

Implementing Implementing tt to emulate to emulate teetee

int main(int argc, char *argv[]) {
 int fds[argc];
 fds[0] = STDOUT_FILENO;
 for (size_t i = 1; i < argc; i++)
 fds[i] = open(argv[i], O_WRONLY | O_CREAT | O_TRUNC, 0644);

 char buffer[2048];
 while (true) {
 ssize_t numRead = read(STDIN_FILENO, buffer, sizeof(buffer));
 if (numRead == 0) break;
 for (size_t i = 0; i < argc; i++) writeall(fds[i], buffer, numRead);
 }

 for (size_t i = 1; i < argc; i++) close(fds[i]);
 return 0;
}

static void writeall(int fd, const char buffer[], size_t len) {
 size_t numWritten = 0;
 while (numWritten < len) {
 numWritten += write(fd, buffer + numWritten, len - numWritten);
 }
}

Features:

Note that argc incidentally provides

a count on the number of descriptors
that write to. That's why we declare
an integer array (or rather, a file
descriptor array) of length argc.

STDIN_FILENO is a built-in constant

for the number 0, which is the
descriptor normally attached to
standard input. STDOUT_FILENO is a

constant for the number 1, which is
the default descriptor bound to
standard output.
I assume all system calls succeed. I'm
not being lazy, I promise. I'm just
trying to keep the examples as clear
and compact as possible. The official
copies of the working programs up on
the myth machines include real error

checking.
15

Using Using statstat and and lstatlstat
stat and lstat are functions—system calls, actually—that populate a struct stat with

information about some named file (e.g. a regular file, a directory, a symbolic link, etc).

The prototypes of the two are presented below:

int stat(const char *pathname, struct stat *st);
int lstat(const char *pathname, struct stat *st);

stat and lstat operate exactly the same way, except when the named file is a link, stat
returns information about the file the link references, and lstat returns information about

the link itself.

man pages exist for both of these functions (e.g. man 2 stat, man 2 lstat, etc.)

16

Using Using statstat and and lstatlstat
the struct stat contains the following fields ()source
struct stat {
 dev_t st_dev; // ID of device containing file
 ino_t st_ino; // file serial number
 mode_t st_mode; // mode of file
 // many other fields (file size, creation and modified times, etc)
};

The st_mode field—which is the only one we'll really pay much attention to—isn't so much a

single value as it is a collection of bits encoding multiple pieces of information about file type
and permissions.
A collection of bit masks and macros can be used to extract information from the st_mode
field.
The next two examples illustrate how the stat and lstat functions can be used to

navigate and otherwise manipulate a tree of files within the file system.

17

http://pubs.opengroup.org/onlinepubs/7908799/xsh/sysstat.h.html

Using Using statstat and and lstatlstat

search is our own imitation of the find program that comes with Linux.

Compare the outputs of the following to be clear how search is supposed to work.

In each of the two test runs below, an executable—one builtin, and one we'll implement
together—is invoked to find all files named stdio.h in /usr/include or within any

descendant subdirectories.
myth60$ find /usr/include -name stdio.h -print
/usr/include/stdio.h
/usr/include/x86_64-linux-gnu/bits/stdio.h
/usr/include/c++/5/tr1/stdio.h
/usr/include/bsd/stdio.h

myth60$./search /usr/include stdio.h
/usr/include/stdio.h
/usr/include/x86_64-linux-gnu/bits/stdio.h
/usr/include/c++/5/tr1/stdio.h
/usr/include/bsd/stdio.h
myth60$

18

Using Using statstat and and lstatlstat

The following main relies on listMatches, which we'll implement a little later.

The full program of interest, complete with error checking we don't present here, is online
.right here

int main(int argc, char *argv[]) {
 assert(argc == 3);
 const char *directory = argv[1];
 struct stat st;
 lstat(directory, &st);
 assert(S_ISDIR(st.st_mode));
 size_t length = strlen(directory);
 if (length > kMaxPath) return 0; // assume kMaxPath is some #define
 const char *pattern = argv[2];
 char path[kMaxPath + 1];
 strcpy(path, directory); // buffer overflow impossible
 listMatches(path, length, pattern);
 return 0;
}

19

http://cs110.stanford.edu/examples/filesystems/search.c

Using Using statstat and and lstatlstat

Implementation details of interest:

This is our first example that actually calls lstat, which extracts information about the

named file and populates the st with that information.

You'll also note the use of the S_ISDIR macro, which examines the upper four bits of the

st_mode field to determine whether the named file is a directory.

S_ISDIR has a few cousins: S_ISREG decides whether a file is a regular file, and

S_ISLNK decided whether the file is a link. We'll use all of these in our next example.

Most of what's interesting is managed by the listMatches function, which does a depth-

first traversal of the filesystem to see what files just happen to match the name of interest.

The implementation of listMatches, which appears on the next slide, makes use of these

three library functions to iterate over all of the files within a named directory.

DIR *opendir(const char *dirname);
struct dirent *readdir(DIR *dirp);
int closedir(DIR *dirp);

20

Using Using statstat and and lstatlstat

Here's the implementation of listMatches:

static void listMatches(char path[], size_t length, const char *name) {
 DIR *dir = opendir(path);
 if (dir == NULL) return; // it's a directory, but permission to open was denied
 strcpy(path + length++, "/");
 while (true) {
 struct dirent *de = readdir(dir);
 if (de == NULL) break; // we've iterated over every directory entry, so stop looping
 if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0) continue;
 if (length + strlen(de->d_name) > kMaxPath) continue;
 strcpy(path + length, de->d_name);
 struct stat st;
 lstat(path, &st);
 if (S_ISREG(st.st_mode)) {
 if (strcmp(de->d_name, name) == 0) printf("%s\n", path);
 } else if (S_ISDIR(st.st_mode)) {
 listMatches(path, length + strlen(de->d_name), name);
 }
 }
 closedir(dir);
}

21

Using Using statstat and and lstatlstat
Implementation details of interest:

Our implementation relies on opendir, which accepts what is presumably a directory. It

returns a pointer to an opaque iterable that surfaces a series of struct dirents via a

sequence of readdir calls.

If opendir accepts anything other than an accessible directory, it'll return NULL.

When the DIR has surfaced all of its entries, readdir returns NULL.

The struct dirent is only guaranteed to contain a d_name field, which is the directory

entry's name, captured as a C string. . and .. are among the sequence of named entries,

but we ignore them to avoid cycles and infinite recursion.
We use lstat instead of stat so we know whether an entry is really a link. We ignore

links, again because we want to avoid infinite recursion and cycles.
If the stat record identifies an entry as a regular file, we print the entire path if and only if

the entry name matches the name of interest.
If the stat record identifies an entry as a directory, we recursively descend into it to see if

any of its named entries match the name of interest.
opendir returns access to a record that eventually must be released via a call to

closedir. That's why our implementation ends with it.
22

Using Using statstat and and lstatlstat
We also present the implementation of list, which emulates the functionality of ls
(in particular, ls ­lUa). Implementations of list and search have much in

common, but implementation of list is much longer.

Sample output of Jerry Cain's list is presented right here:
myth60$./list /usr/class/cs110/WWW
drwxr-xr-x 8 70296 root 2048 Jan 08 17:16 .
drwxr-xr-x >9 root root 2048 Jan 08 17:02 ..
drwxr-xr-x 2 70296 root 2048 Jan 08 15:45 restricted
drwxr-xr-x 4 cgregg operator 2048 Jan 08 17:03 examples
-rw------- 1 cgregg operator 2395 Jan 08 15:51 index.html
// others omitted for brevity
myth60$

Full implementation of list.c is .

We will just show one key function on the slides: the one that knows how to print
out the permissions information (e.g. drwxr­xr­x) for an arbitrary entry.

right here

23

http://cs110.stanford.edu/examples/filesystems/list.c

Using Using statstat and and lstatlstat
Here's the implementation of list's listPermissions function, which prints out

the permission string consistent with the supplied stat information:
static inline void updatePermissionsBit(bool flag, char permissions[],
 size_t column, char ch) {
 if (flag) permissions[column] = ch;
}

static const size_t kNumPermissionColumns = 10;
static const char kPermissionChars[] = {'r', 'w', 'x'};
static const size_t kNumPermissionChars = sizeof(kPermissionChars);
static const mode_t kPermissionFlags[] = {
 S_IRUSR, S_IWUSR, S_IXUSR, // user flags
 S_IRGRP, S_IWGRP, S_IXGRP, // group flags
 S_IROTH, S_IWOTH, S_IXOTH // everyone (other) flags
};
static const size_t kNumPermissionFlags =
 sizeof(kPermissionFlags)/sizeof(kPermissionFlags[0]);

static void listPermissions(mode_t mode) {
 char permissions[kNumPermissionColumns + 1];
 memset(permissions, '-', sizeof(permissions));
 permissions[kNumPermissionColumns] = '\0';
 updatePermissionsBit(S_ISDIR(mode), permissions, 0, 'd');
 updatePermissionsBit(S_ISLNK(mode), permissions, 0, 'l');
 for (size_t i = 0; i < kNumPermissionFlags; i++) {
 updatePermissionsBit(mode & kPermissionFlags[i], permissions, i + 1,
 kPermissionChars[i % kNumPermissionChars]);
 }
 printf("%s ", permissions);
}

24

