
Lecture 05: Understanding Lecture 05: Understanding execvpexecvp

Principles of Computer Systems

Spring 2019

Stanford University

Computer Science Department

Lecturer: Chris Gregg

PDF of this presentation
1

https://web.stanford.edu/class/cs110/static/lectures/05-Execvp/lecture-05-understanding-execvp.pdf

Lecture 05: Question from yesterday: where is the cursor stored for a file?Lecture 05: Question from yesterday: where is the cursor stored for a file?
Diagram from last lecture:

In the last lecture, the question came up about multiple processes pointing to the open file
table, and what happens to the cursor.

Every time there is an open() system call, a new entry is generated for the open file table.

If a process forks, both the parent and child share a pointer to the same open file

 entry, and therefore their cursors will be the same (i.e., if one reads a line, the other will
read the next line). This is also true with the dup and dup2 system calls, which we

will learn about (briefly) in lab and in more detail next week.

2

Assignment 2: The Unix v6 FilesystemAssignment 2: The Unix v6 Filesystem

Your second assignment of the quarter is to write a program in C (not C++) that can read from a
1970s-era Unix version 6 filesystem.

The test data you are reading from are literally bit-for-bit representations of a Unix v6 disk.
You will leverage all of the information covered in the file system lecture from to
write the program, and for more detailed information, see

.

You will primarily be writing code in four different files (and we suggest you tackle them in this
order):

inode.c
file.c
directory.c
pathname.c

Because the program is in C, you will have to rely on arrays of structs, and low-level data

manipulation, as you don't have access to any C++ standard template library classes.

Lecture 3
Section 2.5 of the Salzer and

Kaashoek textbook

3

https://slides.com/tofergregg/lecture-03-layering-naming-filesystem-design
https://www.sciencedirect.com/science/article/pii/B9780123749574000116#st0120

Assignment 2: The Unix v6 FilesystemAssignment 2: The Unix v6 Filesystem

The basic idea of the assignment is to write code that will be able to locate and read files in the
file system. You will, for example, be using a function we've written for you to read sectors from
the disk image:

/**
 * Reads the specified sector (e.g. block) from the disk. Returns the number of bytes read,
 * or -1 on error.
 */
int diskimg_readsector(int fd, int sectorNum, void *buf);

Sometimes, buf will be an array of inodes, sometimes it will be a buffer that holds actual file

data. In any case, the function will always read DISKIMG_SECTOR_SIZE number of bytes, and

it is your job to determine the relevance of those bytes.
It is critical that you carefully read through the header files for this assignment (they are
actually relatively short). There are key constants (e.g., ROOT_INUMBER, struct direntv6,

etc.) that are defined for you to use, and reading them will give you an idea about where to start
for parts of the assignment.

4

Assignment 2: The Unix v6 FilesystemAssignment 2: The Unix v6 Filesystem
One function that can be tricky to write is the following:

/**
 * Gets the location of the specified file block of the specified inode.
 * Returns the disk block number on success, -1 on error.
 */
int inode_indexlookup(struct unixfilesystem *fs, struct inode *inp, int blockNum);

The unixfilesystem struct is defined and initialized for you.

The inode struct will be populated already

The blockNum is the number, in linear order, of the block you are looking for in a particular file.

For example:

Let's say the inode indicates that the file it refers to has a size of 180,000 bytes. And let's

assume that blockNum is 302.

This means that we are looking for the 302nd block of data in the file referred to by inode.

Recall that blocks are 512 bytes long.
How would you find the block index (i.e., sector index) of the 302nd block in the file?

5

Assignment 2: The Unix v6 FilesystemAssignment 2: The Unix v6 Filesystem

1. Determine if the file is large or not
2. If it isn't large, you know you only have direct addressing.
3. If it is large (this file is), then you have indirect addressing.
4. The 302nd block is going to fall into the second indirect block, because each block has 256 block numbers

(each block number is an unsigned short, or a uint16_t).

5. You, therefore, need to use diskimg_readsector to read the sector listed in the 2nd block number

(which is in the inode struct), then extract the (302 % 256)th short from that block, and return the value

you find there.
6. If the block number you were looking for happened to fall into the 8th inode block, then you

would have a further level of indirection for a doubly-indirect lookup.

For example:

Let's say the inode indicates that the file it refers to has a size of 180,000 bytes. And let's assume that

blockNum is 302.

This means that we are looking for the 302nd block of data in the file referred to by inode.

Recall that blocks are 512 bytes long
How would you find the block index (i.e., sector index) of the 302nd block in the file?

6

Assignment 2: The Unix v6 FilesystemAssignment 2: The Unix v6 Filesystem
For the assignment, you will also have to search through directories to locate a particular file.

You do not have to follow symbolic links (you can ignore them completely)
You do need to consider directories that are longer than 32 files long (because they will take
up more than two blocks on the disk), but this is not a special case! You are building generic
functions to read files, so you can rely on them to do the work for you, even for directory file
reading.
Don't forget that a filename is limited to 14 characters, and if it is exactly 14 characters,
there is not a trailing '\0' at the end of the name (this to conserve that one byte of data!)

So...you might want to be careful about using strcmp for files (maybe use strncmp,

instead?)

This is a relatively advanced assignment, with a lot of moving parts.
Start early!
Come to office hours or ask Piazza questions.
Remember: CAs won't look at your code, so you must formulate your questions to be
conceptual enough that they can be answered.

7

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

Third example: Synchronizing between parent and child using waitpid

waitpid can be used to temporarily block one process until a child process exits.

The first argument specifies the wait set, which for the moment is just the id of the child
process that needs to complete before waitpid can return.

The second argument supplies the address of an integer where termination information
can be placed (or we can pass in NULL if we don't care for the information).

The third argument is a collection of bitwise-or'ed flags we'll study later. For the time
being, we'll just go with 0 as the required parameter value, which means that waitpid
should only return when a process in the supplied wait set exits.
The return value is the pid of the child that exited, or -1 if waitpid was called and there

were no child processes in the supplied wait set.

pid_t waitpid(pid_t pid, int *status, int options);

8

Third example: Synchronizing between parent and child using waitpid

Consider the following program, which is more representative of how fork really gets used

in practice (full program, with error checking, is):right here

int main(int argc, char *argv[]) {
 printf("Before.\n");
 pid_t pid = fork();
 printf("After.\n");
 if (pid == 0) {
 printf("I am the child, and the parent will wait up for me.\n");
 return 110; // contrived exit status
 } else {
 int status;
 waitpid(pid, &status, 0)
 if (WIFEXITED(status)) {
 printf("Child exited with status %d.\n", WEXITSTATUS(status));
 } else {
 printf("Child terminated abnormally.\n");
 }
 return 0;
 }
 }

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

9

http://cs110.stanford.edu/examples/processes/separate.c

Third example: Synchronizing between parent and child using waitpid

The output is the same every single time the above program is executed.

The implementation directs the child process one way, the parent another.
The parent process correctly waits for the child to complete using waitpid.

The parent lifts child exit information out of the waitpid call, and uses the WIFEXITED

macro to examine some high-order bits of its argument to confirm the process exited
normally, and it uses the WEXITSTATUS macro to extract the lower eight bits of its

argument to produce the child return value (which we can see is, and should be, 110).
The waitpid call also donates child process-oriented resources back to the system.

myth60$./separate
Before.
After.
After.
I am the child, and the parent will wait up for me.
Child exited with status 110.
myth60$

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

10

Synchronizing between parent and child using waitpid

This next example is more of a brain teaser, but it illustrates just how deep a clone the
process created by fork really is (full program, with more error checking, is).

The code emulates a coin flip to seduce exactly one of the two processes to sleep for a
second, which is more than enough time for the child process to finish.
The parent waits for the child to exit before it allows itself to exit. It's akin to the parent not
being able to fall asleep until he/she knows the child has, and it's emblematic of the types of
synchronization directives we'll be seeing a lot of this quarter.
The final printf gets executed twice. The child is always the first to execute it, because the

parent is blocked in its waitpid call until the child executes everything.

right here
int main(int argc, char *argv[]) {
 printf("I'm unique and just get printed once.\n");
 pid_t pid = fork();
 bool parent = pid != 0;
 if ((random() % 2 == 0) == parent) sleep(1); // force exactly one of the two to sleep
 if (parent) waitpid(pid, NULL, 0); // parent shouldn't exit until child has finished
 printf("I get printed twice (this one is being printed from the %s).\n",
 parent ? "parent" : "child");
 return 0;
}

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

11

http://cs110.stanford.edu/examples/processes/parent-child.c

Spawning and synchronizing with multiple child processes

A parent can call fork multiple times, provided it reaps the child processes (via waitpid)

once they exit. If we want to reap processes as they exit without concern for the order they
were spawned, then this does the trick (full program checking):right here

int main(int argc, char *argv[]) {
 for (size_t i = 0; i < 8; i++) {
 if (fork() == 0) exit(110 + i);
 }
 while (true) {
 int status;
 pid_t pid = waitpid(-1, &status, 0);
 if (pid == -1) { assert(errno == ECHILD); break; }
 if (WIFEXITED(status)) {
 printf("Child %d exited: status %d\n", pid, WEXITSTATUS(status));
 } else {
 printf("Child %d exited abnormally.\n", pid);
 }
 }
 return 0;
}

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

12

http://web.stanford.edu/class/cs110/examples/processes/reap-as-they-exit.c

Spawning and synchronizing with multiple child processes

Note we feed a -1 as the first argument to waitpid. That -1 states we want to hear about

any child as it exits, and pids are returned in the order their processes finish.
Eventually, all children exit and waitpid correctly returns -1 to signal there are no more

processes under the parent's jurisdiction.
When waitpid returns -1, it sets a global variable called errno to the constant ECHILD to

signal waitpid returned -1 because all child processes have terminated. That's the "error"

we want.
myth60$./reap-as-they-exit
Child 1209 exited: status 110
Child 1210 exited: status 111
Child 1211 exited: status 112
Child 1216 exited: status 117
Child 1212 exited: status 113
Child 1213 exited: status 114
Child 1214 exited: status 115
Child 1215 exited: status 116
myth60$

myth60$./reap-as-they-exit
Child 1453 exited: status 115
Child 1449 exited: status 111
Child 1448 exited: status 110
Child 1450 exited: status 112
Child 1451 exited: status 113
Child 1452 exited: status 114
Child 1455 exited: status 117
Child 1454 exited: status 116
myth60$

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

13

Spawning and synchronizing with multiple child processes

We can do the same thing we did in the first program, but monitor and reap the child
processes in the order they are forked.
Check out the abbreviated program below (full program with error checking):right here

int main(int argc, char *argv[]) {
 pid_t children[8];
 for (size_t i = 0; i < 8; i++) {
 if ((children[i] = fork()) == 0) exit(110 + i);
 }
 for (size_t i = 0; i < 8; i++) {
 int status;
 pid_t pid = waitpid(children[i], &status, 0);
 assert(pid == children[i]);
 assert(WIFEXITED(status) && (WEXITSTATUS(status) == (110 + i)));
 printf("Child with pid %d accounted for (return status of %d).\n",
 children[i], WEXITSTATUS(status));
 }
 return 0;
}

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

14

http://web.stanford.edu/class/cs110/examples/processes/reap-in-fork-order.c

Spawning and synchronizing with multiple child processes

This version spawns and reaps processes in some first-spawned-first-reaped manner.
The child processes aren't required to exit in FSFR order.
In theory, the first child thread could finish last, and the reap loop could be held up on its
very first iteration until the first child really is done. But the process zombies—yes, that's
what they're called—are reaped in the order they were forked.
Below is a sample run of the reap­in­fork­order executable. The pids change between

runs, but even those are guaranteed to be published in increasing order.

myth60$./reap-as-they-exit
Child with pid 4689 accounted for (return status of 110).
Child with pid 4690 accounted for (return status of 111).
Child with pid 4691 accounted for (return status of 112).
Child with pid 4692 accounted for (return status of 113).
Child with pid 4693 accounted for (return status of 114).
Child with pid 4694 accounted for (return status of 115).
Child with pid 4695 accounted for (return status of 116).
Child with pid 4696 accounted for (return status of 117).
myth60$

Lecture 05: More on MultiprocessingLecture 05: More on Multiprocessing

15

It is possible to have a forked process simply do other work that you program. In other words,

you have two processes, each doing work concurrently, and you've programmed the code for
both processes. These are the examples we've seen so far.
However, this is actually not the most common use for fork. Most often, a programmer wants

to run a completely separate program, but wants to maintain control over the program, and may
also (quite frequently) want to send data to the program through stdin and capture the

output of the program through its stdout.

This is what your shell does whenever you launch a program. The shell is a program, and when
you type a command, it executes that program, and waits for it to end.

Lecture 05: New system call: Lecture 05: New system call: execvpexecvp

In the screenshot to the left, the
terminal shell is a program, and
after you type ls, the shell runs the
ls program, located at /bin/ls.

The shell waits for ls to finish, and

then reprompts for another
command.

16

Enter the execvp system call!

 execvp effectively reboots a process to run a different program from scratch. Here is the

prototype:

path identifies the name of the executable to be invoked.

argv is the argument vector that should be funneled through to the new executable's

main function.

For the purposes of CS110, path and argv[0] end up being the same exact string.

If execvp fails to cannibalize the process and install a new executable image within it, it

returns -1 to express failure.
If execvp succeeds, it never returns in the calling process. #deep

execvp has many variants (execle, execlp, and so forth. Type man execvp to see all of

them). We generally rely on execvp in this course.

Lecture 05: New system call: Lecture 05: New system call: execvpexecvp

int execvp(const char *path, char *argv[]);

17

First example using execvp? An implementation mysystem to emulate the behavior of the libc

function called system.

Here we present our own implementation of the mysystem function, which executes the

supplied command as if we typed it out in the terminal ourselves, ultimately returning once

the surrogate command has finished.

If the execution of command exits normally (either via an exit system call, or via a normal

return statement from main), then our mysystem implementation should return that exact

same exit value.
If the execution exits abnormally (e.g. it segfaults), then we'll assume it aborted because
some signal was ignored, and we'll return that negative of that signal number (e.g. -11 for
SIGSEGV).

Lecture 05: New system call: Lecture 05: New system call: execvpexecvp

18

Instead of calling a subroutine to perform some task and waiting for it to complete,
mysystem spawns a child process to perform some task and waits for it to complete.

We don't bother checking the return value of execvp, because we know that if it returns at all,

it returns a -1. If that happens, we need to handle the error and make sure the child process
terminates, via an exposed exit(0) call.

Why not call execvp inside parent and forgo the child process altogether? Because

execvp would consume the calling process, and that's not what we want.

Lecture 05: New system call: Lecture 05: New system call: execvpexecvp

static int mysystem(const char *command) {
 pid_t pid = fork();
 if (pid == 0) {
 char *arguments[] = {"/bin/sh", "-c", (char *) command, NULL};
 execvp(arguments[0], arguments);
 printf("Failed to invoke /bin/sh to execute the supplied command.");
 exit(0);
 }
 int status;
 waitpid(pid, &status, 0);
 return WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);
}

1
2
3
4
5
6
7
8
9

10
11
12

Here's the implementation, with minimal error checking (the full version is right):here

19

http://cs110.stanford.edu/examples/processes/mysystem.c

fgets is a somewhat overflow-safe variant on scanf that knows to read everything up

through and including the newline character.

The newline character is retained, so we need to chomp that newline off before calling
mysystem.

Lecture 05: New system call: Lecture 05: New system call: execvpexecvp

static const size_t kMaxLine = 2048;
int main(int argc, char *argv[]) {
 char command[kMaxLine];
 while (true) {
 printf("> ");
 fgets(command, kMaxLine, stdin);
 if (feof(stdin)) break;
 command[strlen(command) - 1] = '\0'; // overwrite '\n'
 printf("retcode = %d\n", mysystem(command));
 }

 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Here's a test harness that we can run to confirm our mysystem implementation is working as

expected:

20

