
Lecture 07: SignalsLecture 07: Signals

Principles of Computer Systems

Spring 2019

Stanford University

Computer Science Department

Lecturer: Chris Gregg

PDF of this presentation

"The barman asks what the first
one wants, two race conditions

walk into a bar."

1

https://web.stanford.edu/class/cs110/static/lectures/07-Signals/lecture-07-signals.pdf

Introduction to Signals

A signal is a small message that notifies a process that an event of some type occurred.
Signals are often sent by the kernel, but they can be sent from other processes as well.
A signal handler is a function that executes in response to the arrival and consumption of a
signal. The signal handler runs in the process that receives the signal.
You're already familiar with some types of signals, even if you've not referred to them by
that name before.

You haven't truly programmed in C before unless you've unintentionally dereferenced a
NULL pointer.

When that happens, the kernel delivers a signal of type SIGSEGV, informally known as a

segmentation fault (or a SEGmentation Violation, or SIGSEGV, for short).

Unless you install a custom signal handler to manage the signal differently, a SIGSEGV
terminates the program and generates a core dump.

Each signal category (e.g. SIGSEGV) is represented internally by some number (e.g. 11). In

fact, C #defines SIGSEGV to be the number 11.

Lecture 07: SignalsLecture 07: Signals

2

Other signal types:

Whenever a process commits an integer-divide-by-zero (and, in some cases, a floating-point
divide by zero on older architectures), the kernel hollers and issues a SIGFPE signal to the

offending process. By default, the program handles the SIGFPE by printing an error

message announcing the zero denominator and generating a core dump.
When you type ctrl-c, the kernel sends a SIGINT to the foreground process (and by

default, that foreground is terminated).
When you type ctrl-z, the kernel issues a SIGTSTP to the foreground process (and by

default, the foreground process is halted until a subsequent SIGCONT signal instructs it to

continue).
When a process attempts to publish data to the write end of a pipe after the read end has
been closed, the kernel delivers a SIGPIPE to the offending process. The default SIGPIPE
handler prints a message identifying the pipe error and terminates the program.

Lecture 07: SignalsLecture 07: Signals

3

One signal type most important to multiprocessing:

Whenever a child process changes state—that is, it exits, crashes, stops, or resumes from a
stopped state, the kernel sends a SIGCHLD signal to the process's parent.

By default, the signal is ignored. In fact, we've ignored it until right now and gotten away
with it.
This particular signal type is instrumental to allowing forked child processes to run in
the background while the parent process moves on to do its own work without blocking
on a waitpid call.

The parent process, however, is still required to reap child processes, so the parent will
typically register a custom SIGCHLD handler to be asynchronously invoked whenever a

child process changes state.
These custom SIGCHLD handlers almost always include calls to waitpid, which can be

used to surface the pids of child processes that've changed state. If the child process of
interest actually terminated, either normally or abnormally, the waitpid also culls the

zombie the relevant child process has become.

Lecture 07: SignalsLecture 07: Signals

4

Our first signal handler example: Disneyland

Here's a carefully coded example that illustrates how to implement and install a
SIGCHLD handler.

The premise? Dad takes his five kids out to play. Each of the five children plays for a
different length of time. When all five kids are done playing, the six of them all go home.
The parent process is modeling dad, and the five child processes are modeling his children.
(Full program, with error checking, is .)right here

static const size_t kNumChildren = 5;
static size_t numDone = 0;

int main(int argc, char *argv[]) {
 printf("Let my five children play while I take a nap.\n");
 signal(SIGCHLD, reapChild);
 for (size_t kid = 1; kid <= 5; kid++) {
 if (fork() == 0) {
 sleep(3 * kid); // sleep emulates "play" time
 printf("Child #%zu tired... returns to dad.\n", kid);
 return 0;
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13

Lecture 07: SignalsLecture 07: Signals

5

http://web.stanford.edu/class/cs110/examples/processes/five-children.c

Our first signal handler example: Disneyland

The program is crafted so each child process exits at three-second intervals. reapChild, of

course, handles each of the SIGCHLD signals delivered as each child process exits.

The signal prototype doesn't allow for state to be shared via parameters, so we have no

choice but to use global variables.

 // code below is a continuation of that presented on the previous slide
 while (numDone < kNumChildren) {
 printf("At least one child still playing, so dad nods off.\n");
 snooze(5); // our implementation -- does not wake up upon signal
 printf("Dad wakes up! ");
 }
 printf("All children accounted for. Good job, dad!\n");
 return 0;
}

static void reapChild(int unused) {
 waitpid(-1, NULL, 0);
 numDone++;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Lecture 07: SignalsLecture 07: Signals

6

Here's the output of the above program.

Dad's wakeup times (at t = 5 sec, t = 10 sec, etc.) interleave the various finish times (3 sec, 6
sec, etc.) of the children, and the output published below reflects that.
Understand that the SIGCHLD handler is invoked 5 times, each in response to some child

process finishing up.

cgregg@myth60$./five-children
Let my five children play while I take a nap.
At least one child still playing, so dad nods off.
Child #1 tired... returns to dad.
Dad wakes up! At least one child still playing, so dad nods off.
Child #2 tired... returns to dad.
Child #3 tired... returns to dad.
Dad wakes up! At least one child still playing, so dad nods off.
Child #4 tired... returns to dad.
Child #5 tired... returns to dad.
Dad wakes up! All children accounted for. Good job, dad!
cgregg@myth60$

Lecture 07: SignalsLecture 07: Signals

7

Advancing our understanding of signal delivery and handling.

Now consider the scenario where the five kids are the same age and run about Disneyland
for the same amount of time. Restated, sleep(3 * kid) is now sleep(3) so all five

children flashmob dad when they're all done.
The output presented below makes it clear dad never detects all five kids are present and
accounted for, and the program runs forever because dad keeps going back to sleep.

cgregg*@myth60$./broken-pentuplets
Let my five children play while I take a nap.
At least one child still playing, so dad nods off.
Kid #1 done playing... runs back to dad.
Kid #2 done playing... runs back to dad.
Kid #3 done playing... runs back to dad.
Kid #4 done playing... runs back to dad.
Kid #5 done playing... runs back to dad.
Dad wakes up! At least one child still playing, so dad nods off.
Dad wakes up! At least one child still playing, so dad nods off.
Dad wakes up! At least one child still playing, so dad nods off.
Dad wakes up! At least one child still playing, so dad nods off.
^C # I needed to hit ctrl-c to kill the program that loops forever!
cgregg@myth60$

Lecture 07: SignalsLecture 07: Signals

8

Advancing our understanding of signal delivery and handling.

The five children all return to dad at the same time, but dad can't tell.
Why? Because if multiple signals come in at the same time, the signal handler is only run
once.

If three SIGCHLD signals are delivered while dad is off the processor, the operating

system only records the fact that at one or more SIGCHLDs came in.

When the parent is forced to execute its SIGCHLD handler, it must do so on behalf of

the one or more signals that may have been delivered since the last time it was on the
processor.

That means our SIGCHLD handler needs to call waitpid in a loop, as with:

static void reapChild(int unused) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, 0);
 if (pid < 0) break;
 numDone++;
 }
}

Lecture 07: SignalsLecture 07: Signals

9

Advancing our understanding of signal delivery and handling.

The improved reapChild implementation seemingly fixes the pentuplets program,

but it changes the behavior of the first five­children program.

When the first child in the original program has exited, the other children are still out
playing.
The SIGCHLD handler will call waitpid once, and it will return the pid of the first

child.
The SIGCHLD handler will then loop around and call waitpid a second time.

This second call will block until the second child exits three seconds later, preventing
dad from returning to his nap.

We need to instruct waitpid to only reap children that have exited but to return without

blocking, even if there are more children still running. We use WNOHANG for this, as with:
static void reapChild(int unused) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break; // note the < is now a <=
 numDone++;
 }
}

Lecture 07: SignalsLecture 07: Signals

10

All SIGCHLD handlers generally have this while loop structure.

Note we changed the if (pid < 0)test to if (pid <= 0).

A return value of -1 typically means that there are no child processes left.
A return value of 0—that's a new possible return value for us—means there are other child
processes, and we would have normally waited for them to exit, but we’re returning instead
because of the WNOHANG being passed in as the third argument.

The third argument supplied to waitpid can include several flags bitwise-or'ed together.

WUNTRACED informs waitpid to block until some child process has either ended or been

stopped.
WCONTINUED informs waitpid to block until some child process has either ended or

resumed from a stopped state.
WUNTRACED | WCONTINUED | WNOHANG asks that waitpid return information about

a child process that has changed state (i.e. exited, crashed, stopped, or continued) but to do
so without blocking.

Lecture 07: SignalsLecture 07: Signals

11

Synchronization, multi-processing, parallelism, and concurrency.

All of the above are central themes of the course, and all are difficult to master.
When you introduce multiprocessing (as you do with fork) and asynchronous signal

handling (as you do with signal), concurrency issues and race conditions will creep in

unless you code very, very carefully.
Signal handlers and the asynchronous interrupts that come with them mean that your
normal execution flow can, in general, be interrupted at any time to handle signals.
Consider the program on the next slide, which is a nod to the type of code you'll write for
Assignment 4. The full program, with error checking, is):

The program spawns off three child processes at one-second internals.
Each child process prints the date and time it was spawned.
The parent also maintains a pretend job list. It's pretend, because rather than
maintaining a data structure with active process ids, we just inline printf statements

stating where pids would be added to and removed from the job list data structure
instead of actually doing it.

right here

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

12

http://web.stanford.edu/class/cs110/examples/processes/job-list-synchronization.c

Here is the program itself on the left, and some test runs on the right.

// job-list-broken.c
static void reapProcesses(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 printf("Job %d removed from job list.\n", pid);
 }
}

char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 for (size_t i = 0; i < 3; i++) {
 pid_t pid = fork();
 if (pid == 0) execvp(kArguments[0], kArguments);
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

myth60$./job-list-broken
Sun Jan 27 03:57:30 PDT 2019
Job 27981 removed from job list.
Job 27981 added to job list.
Sun Jan 27 03:57:31 PDT 2019
Job 27982 removed from job list.
Job 27982 added to job list.
Sun Jan 27 03:57:32 PDT 2019
Job 27985 removed from job list.
Job 27985 added to job list.
myth60$./job-list-broken
Sun Jan 27 03:59:33 PDT 2019
Job 28380 removed from job list.
Job 28380 added to job list.
Sun Jan 27 03:59:34 PDT 2019
Job 28381 removed from job list.
Job 28381 added to job list.
Sun Jan 27 03:59:35 PDT 2019
Job 28382 removed from job list.
Job 28382 added to job list.
myth60$

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

13

Even with a program this simple, there are implementation issues that need to be addressed

myth60$./job-list-broken
Sun Jan 27 03:57:30 PDT 2019
Job 27981 removed from job list.
Job 27981 added to job list.
Sun Jan 27 03:57:31 PDT 2019
Job 27982 removed from job list.
Job 27982 added to job list.
Sun Jan 27 03:57:32 PDT 2019
Job 27985 removed from job list.
Job 27985 added to job list.
myth60$./job-list-broken
Sun Jan 27 03:59:33 PDT 2019
Job 28380 removed from job list.
Job 28380 added to job list.
Sun Jan 27 03:59:34 PDT 2019
Job 28381 removed from job list.
Job 28381 added to job list.
Sun Jan 27 03:59:35 PDT 2019
Job 28382 removed from job list.
Job 28382 added to job list.
myth60$

The most troubling part of the output on the right is the fact
that process ids are being removed from the job list before
they're being added.
It's true that we're artificially pushing the parent off the CPU
with that sleep(1) call, which allows the child process to

churn through its date program and print the date and time to

stdout.

Even if the sleep(1) is removed, it's possible that the child

executes date, exits, and forces the parent to execute its

SIGCHLD handler before the parent gets to its own printf.

The fact that it's possible means we have a concurrency issue.
We need some way to block reapProcesses from running

until it's safe or sensible to do so. Restated, we'd like to
postpone reapProcesses from executing until the parent's

printf has returned.

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

14

The kernel provides directives that allow a process to temporarily ignore signal delivery.
The subset of directives that interest us are presented below:

The sigset_t type is a small primitive—usually a 32-bit, unsigned integer—that's used as a

bit vector of length 32. Since there are just under 32 signal types, the presence or absence of
signums can be captured via an ordered collection of 0's and 1's.

sigemptyset is used to initialize the sigset_t at the supplied address to be the empty set

of signals. We generally ignore the return value.
sigaddset is used to ensure the supplied signal number, if not already present, gets added to

the set addressed by additions. Again, we generally ignore the return value.

sigprocmask adds (if op is set to SIG_BLOCK) or removes (if op is set to SIG_UNBLOCK)

the signals reachable from delta to/from the set of signals being ignored at the moment. The

third argument is the location of a sigset_t that can be updated with the set of

signals being blocked at the time of the call. Again, we generally ignore the return value.

int sigemptyset(sigset_t *set);
int sigaddset(sigset_t *additions, int signum);
int sigprocmask(int op, const sigset_t *delta, sigset_t *existing);

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

15

Here's a function that imposes a block on SIGCHLDs:

Here's a function that lifts the block on the signals packaged within the supplied vector:

Note that NULLis passed as the third argument to both sigprocmask calls. That just means

that I don't care to hear about what signals were being blocked before the call.

static void imposeSIGCHLDBlock() {
 sigset_t set;
 sigemptyset(&set);
 sigaddset(&set, SIGCHLD);
 sigprocmask(SIG_BLOCK, &set, NULL);
}

static void liftSignalBlocks(const vector<int>& signums) {
 sigset_t set;
 sigemptyset(&set);
 for (int signum: signums) sigaddset(&set, signum);
 sigprocmask(SIG_UNBLOCK, &set, NULL);
}

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

16

Here's an improved version of the job list program from earlier. (Full program .)

here

// job-list-fixed.c
char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 sigset_t set;
 sigemptyset(&set);
 sigaddset(&set, SIGCHLD);
 for (size_t i = 0; i < 3; i++) {
 sigprocmask(SIG_BLOCK, &set, NULL);
 pid_t pid = fork();
 if (pid == 0) {
 sigprocmask(SIG_UNBLOCK, &set, NULL);
 execvp(kArguments[0], kArguments);
 }
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 sigprocmask(SIG_UNBLOCK, &set, NULL);
 }
 return 0;
}

myth60$./job-list-fixed
Sun Jan 27 05:16:54 PDT 2019
Job 3522 added to job list.
Job 3522 removed from job list.
Sun Jan 27 05:16:55 PDT 2019
Job 3524 added to job list.
Job 3524 removed from job list.
Sun Jan 27 05:16:56 PDT 2019
Job 3527 added to job list.
Job 3527 removed from job list.
myth60$./job-list-fixed
Sun Jan 27 05:17:15 PDT 2018
Job 4677 added to job list.
Job 4677 removed from job list.
Sun Jan 27 05:17:16 PDT 2018
Job 4691 added to job list.
Job 4691 removed from job list.
Sun Jan 27 05:17:17 PDT 2018
Job 4692 added to job list.
Job 4692 removed from job list.
myth60$

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

17

http://web.stanford.edu/class/cs110/examples/processes/job-list-synchronization-improved.c

The implementation of reapProcesses is the same as before,

so I didn't reproduce it.
The updated parent programmatically defers its obligation to
handle signals until it returns from its printf—that is, it's added

the pid to the job list.
As it turns out, a forked process inherits blocked signal sets, so it

needs to lift the block via its own call to
sigprocmask(SIG_UNBLOCK, ...). While it doesn't matter

for this example (date almost certainly doesn't spawn its own

children or rely on SIGCHLD signals), other executables may very

well rely on SIGCHLD, as signal blocks are retained even across

execvp boundaries.

In general, you want the stretch of time that signals are blocked to
be as narrow as possible, since you're overriding default signal
handling behavior and want to do that as infrequently as possible.

myth60$./job-list-fixed
Sun Jan 27 05:16:54 PDT 2019
Job 3522 added to job list.
Job 3522 removed from job list.
Sun Jan 27 05:16:55 PDT 2019
Job 3524 added to job list.
Job 3524 removed from job list.
Sun Jan 27 05:16:56 PDT 2019
Job 3527 added to job list.
Job 3527 removed from job list.
myth60$./job-list-fixed
Sun Jan 27 05:17:15 PDT 2018
Job 4677 added to job list.
Job 4677 removed from job list.
Sun Jan 27 05:17:16 PDT 2018
Job 4691 added to job list.
Job 4691 removed from job list.
Sun Jan 27 05:17:17 PDT 2018
Job 4692 added to job list.
Job 4692 removed from job list.
myth60$

The program on the previous page addresses all of our concurrency concerns

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

18

Signal extras: kill and raise

Processes can message other processes using signals via the kill system call. And processes

can even send themselves signals using raise.

The kill system call is analogous to the /bin/kill shell command.

Unfortunately named, since kill implies SIGKILL implies death.

So named, because the default action of most signals in early UNIX implementations was to
just terminate the target process.

We generally ignore the return value of kill and raise. Just make sure you call it properly.

The pid parameter is overloaded to provide more flexible signaling.

When pid is a positive number, the target is the process with that pid.

When pid is a negative number less than -1, the targets are all processes within the process

group abs(pid). We'll rely on this in Assignment 4.

pid can also be 0 or -1, but we don't need to worry about those. See the man page for

kill if you're curious.

int kill(pid_t pid, int signum);
int raise(int signum); // equivalent to kill(getpid(), signum);

Lecture 07: Masking Signals and Deferring HandlersLecture 07: Masking Signals and Deferring Handlers

19

