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We now have three distinct ways to coordinate between threads:

mutex: mutual exclusion (lock), used to enforce critical sections and atomicity

condition_variable: way for threads to coordinate and signal when a variable

has changed (integrates a lock for the variable)
semaphore: a generalization of a lock, where there can be n threads operating in

parallel (a lock is a semaphore with n=1)

Review from Last WeekReview from Last Week
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A mutex is a simple lock that is shared between threads, used to protect critical
regions of code or shared data structures.

mutex m;

mutex.lock()
mutex.unlock()

A mutex is often called  a lock: the terms are mostly interchangeable
When a thread attempts to lock a mutex:

Currently unlocked: the thread takes the lock, and continues executing
Currently locked: the thread blocks until the lock is released by the current lock-
holder, at which point it attempts to take the lock again (and could compete with
other waiting threads).

Only the current lock-holder is allowed to unlock a mutex
Deadlock can occur when threads form a circular wait on mutexes (e.g. dining
philosophers)
Places we've seen an operating system use mutexes for us:

All file system operation (what if two programs try to write at the same time?
create the same file?)
Process table (what if two programs call fork() at the same time?)

Mutual Exclusion (mutex)Mutual Exclusion (mutex)
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The lock_guard<mutex> is very simple: it obtains the lock in its constructor, and

releases the lock in its destructor.
We use a lock_guard<mutex> so we don't have to worry about unlocking a

mutex when we exit a block of code

lock_guard<mutex>lock_guard<mutex>

void function(mutex &m) { 
    lock_guard<mutex> lg(m); // m is now locked 
    while (true) { 
      if (condition1) return; // lg automatically unlocked on return 
      // ... 
      if (condition2) break; 
    } 
    // mutex will be unlocked after this line when lg goes out of scope 
}

A lock guard is a good when you always want to release a lock on leaving a block.

If you want to unlock it later or later, don't use it (or change block structure)

Using a lock guard is a good idea when control flow is complex (returns, breaks,
multiple exit points), such that the lock would have to be unlocked in multiple places
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The conditional_variable  enables one thread to signal to other threads that a

variable has changed (e.g., a work queue), such that a condition has changed (there's
now work on the queue)
It works in conjunction with a mutex to protect the shared variable.

A thread locks the mutex to read the variable. If the variable indicates  that the
thread should wait, it calls cv.wait(m). Calling wait atomically unlocks the

mutex and places the thread on a queue of threads waiting on the condition. Other
threads can lock the mutex and check the condition. They'll wait too.
When another thread locks the mutex to update it, changing the condition, it calls
cv.notify_all() then unlocks the mutex. This wakes up all threads waiting on

the condition variable. They queue up to acquire the mutex and execute as before.

conditional_variableconditional_variable

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) { 
  lock_guard<mutex> lg(m); 
  while (permits == 0) cv.wait(m); 
  permits--; 
} 
 
static void grantPermission(size_t& permits, condition_variable_any& cv, mutex& m) { 
  lock_guard<mutex> lg(m); 
  permits++; 
  if (permits == 1) cv.notify_all(); 
} 5



The pattern of waiting on a condition variable within a while loop that checks the
condition is so common there's a variant of wait that supports it.

 

 

 

 

Pred is a function that returns true or false. You can use a lambda function for it: 

 
 
 
 
 
 
Some times the operating system has used condition variables for us

Reading from a pipe: caller waits until someone writing to the pipe wakes it up
Writing to a pipe: caller waits until there's space in the pipe
Waiting until a child has exited

conditional_variableconditional_variable

template <Predicate pred> 
void condition_variable_any::wait(mutex& m, Pred pred) { 
  while (!pred()) wait(m); 
} 
 

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) { 
  lock_guard<mutex> lg(m); 
  cv.wait(m, [&permits] { return permits > 0; }); 
  permits--; 
} 
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The semaphore class is not built in to C++, but it is a basic synchronization primitive

You declare a semaphore with a maximum value (e.g., permits in last lecture)

semaphoresemaphore

semaphore permits(5); // this will allow five permits

A thread uses a semaphore by decrementing it with a call to wait; if the semaphore
value is 0, the thread blocks.
A thread releasing a semaphore calls signal, this increments the value and triggers
waiting threads to resume (and try to decrement).

permits.wait(); // if five other threads currently hold permits, this will block 
 
// only five threads can be here at once 
 
permits.signal(); // if other threads are waiting, a permit will be available

A mutex is a special case of a semaphore with a value of 1. If you need a lock, use a

mutex. Unlike semaphores, one error checking benefit of a mutex is that it can only be
released by the lock-holder. But in cases when you need to allow a group of threads to
be in a section of code (e.g., want to limit parallelism 2 <= n  <= k), use a semaphore.

7



Suppose we have a thread that puts data into a buffer, which another thread reads
and processes.
Why is this implementation ridiculously unsafe and completely broken?

const size_t BUF_SIZE = 8; 
const size_t DATA_SIZE = 320; // 40 cycles around buffer 
static char buffer[BUF_SIZE]; 
 
static void writer(char buffer[]) { 
  for (size_t i = 0; i < DATA_SIZE; i++) {  
    buffer[i % BUF_SIZE] = prepareData(); 
  } 
} 
 
static void reader(char buffer[]) { 
  for (size_t i = 0; i < DATA_SIZE; i++) {  
    processData(buffer[i % BUF_SIZE]); 
  } 
} 
 
int main(int argc, const char *argv[]) { 
  thread w(writer, buffer); 
  thread r(reader, buffer); 
  w.join(); 
  r.join(); 
  return 0; 
}

Example: Synchronizing on a VectorExample: Synchronizing on a Vector
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Each thread runs independently of the other.
The reader can read past where there's valid data.
The writer can overwrite data before the reader has read it.

So Many ProblemsSo Many Problems
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One solution? Maintain a condition variable: vector not empty or full

If the vector is full, the writer thread waits on the variable. When the reader
removes an element from the queue, it signals the condition variable.
If the vector is empty, the reader thread waits on the variable. When the writer
adds an element to the queue, it signals the condition variable.

Need to maintain a head/read index (first element) and a tail/write index (first free)

Empty if tail == head
Full if (tail + 1) % BUF_SIZE == head 
 
 
 
 
 
 

struct safe_queue { 
  char buffer[BUF_SIZE]; 
  size_t head; 
  size_t tail; 
  mutex lock; 
  condition_variable_any cond; 
}; 
 
 
int main(int argc, const char *argv[]) { 
  safe_queue queue; 
  thread w(writer, ref(queue)); 
  thread r(reader, ref(queue); 
  w.join(); 
  r.join(); 
  return 0; 
}

One Solution: Condition VariablesOne Solution: Condition Variables

a b c

head tail

head tail

g h i j k d e f

tail head

ready

empty

full
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The reader and writer rely on the condition variable to tell each other when there
might be work to do.
NB: cout use is unsafe, no oslock because not supported in C playground.

static void writer(safe_queue& queue) { 
    for (size_t i = 0; i < DATA_SIZE; i++) {  
        queue.lock.lock(); 
        while (full(queue)) { 
            cout << "Full" << endl; 
            queue.cond.wait(queue.lock); 
        } 
        queue.buffer[queue.tail] = prepareData(); 
        queue.tail = (queue.tail + 1) % BUF_SIZE; 
        queue.lock.unlock(); 
        queue.cond.notify_all(); 
    } 
} 
 
static void reader(safe_queue& queue) { 
    for (size_t i = 0; i < DATA_SIZE; i++) { 
        queue.lock.lock(); 
        while (empty(queue)) { 
            cout << "Empty" << endl; 
            queue.cond.wait(queue.lock); 
        } 
        processData(queue.buffer[queue.head]); 
        queue.head = (queue.head + 1) % BUF_SIZE; 
        queue.lock.unlock(); 
        queue.cond.notify_all(); 
    } 
}

Safe Reading and WritingSafe Reading and Writing

11



Running the Full ExampleRunning the Full Example

https://cplayground.com/?p=eel-gull-hippo
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Mutex protects one or more variables to provide atomicity

Good: allows fine-grained control of when and how long lock is held
Danger: requires manual locking/unlocking, bugs are easy

"Bugs as Deviant Behavior: A General Approach to Inferring Errors in Systems
Code", Engler at al. (SOSP 2001) uses simple inference to find cases when a
variable was protected by a lock most but not all of the time (suggesting a bug)

Scoped lock (lock_guard) protects one or more variables at granularity of basic block

Good: compiler promises lock will be released on leaving block
Danger: can't hold locks across block boundaries, so can lead to convoluted code

Condition variables coordinate threads on shared variables locked by a mutex

Good: allows threads to cheaply (not spin) wait until they are needed
Danger:  manual checking of conditions on variable (e.g. while(full(queue)))

Multithreading Design PatternsMultithreading Design Patterns
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Question period onQuestion period on
mutexes, conditionmutexes, condition

variables, and sempahoresvariables, and sempahores
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Suppose we want to use some standard data structures in our multithreaded program

These data structures are not thread-safe!

You have to write your own synchronization around them (like we did for the
circular buffer in the reader/writer example)
Why can't we just have some nice simple data structures that do it all for us?

There are some thread-safe variants, e.g. Intel's Thread Building Blocks (TBB)

These solve some, but not all of the problems

std::vector

std::map

Safe Data Structures Are Rarely SimpleSafe Data Structures Are Rarely Simple
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A std::vector is a standard data structure, backed by an array that can grow/shrink

O(1) element lookup
O(1) append
O(n) random insertion or deletion

Strawman: let's make it thread-safe by locking a mutex on each method call

Every method call will execute atomically
Only one thread can access the vector at any time, but they will interleave and we
could use finer-grained locking if this is a performance problem 
 
 
 
 
 
 

What could go wrong here even if size() and ints[i] each run atomically?

Example: Thread-Safe Access to a VectorExample: Thread-Safe Access to a Vector

int vector_print_thread(std::vector<int>& ints) {
    size_t size = ints.size();
    for (size_t i = 0; i < size; i++) {
        std::cout << ints[i] << std::endl;
    }
}

1
2
3
4
5
6
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A data structure can provide atomicity guarantees on its methods, but a caller often
wants higher-level atomicity guarantees, based on its own logic and operations

Insert an element at the end of the vector
Scan across all elements to find the maximum
If the vector is empty, insert a value

Providing each and every use case as an atomic method will give you a terrible
abstraction: large, complex, huge code size, etc.

Java tried making every object have an integrated lock

All methods marked synchronized are atomic
You can also take an object's lock with synchronized(obj)
Encourages coarse-grained locking, no flexibility on type of locks
Doesn't support semaphores/pools
General Java failure of being first major language to try a good idea and getting
it wrong, then later languages learned from the mistakes and did it much better

Within a particular system/library, there are narrower and well understood patterns

System/library composes synchronization and data structures at right levels of
abstraction

Granularity of AtomicityGranularity of Atomicity

17



A std::vector is a standard data structure, backed by an array that can grow/shrink

O(1) element lookup
O(1) append
O(n) random insertion or deletion

Iterators are a common design pattern for standard data structures

Allow you to pass around an object that allows you to traverse a structure
independently of what that structure is
If your code uses an iterator, it could be given an iterator for a list, or for a vector,
or for a map, and work with any of them
Iterator has pointers to internal data structures

Interior Mutability and VisibilityInterior Mutability and Visibility

iterator

vector
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Example Iterator CodeExample Iterator Code

https://cplayground.com/?p=marmoset-quail-cat
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What happens to an iterator if another thread removes the end of the vector?
What happens if an insertion is past the end of the array?

The vector allocates a bigger array and copies the data over
What happens to the iterator pointer?

Thread-Safe Iterator AccessThread-Safe Iterator Access

iterator

vector
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Suppose we want a thread-safe tree that allows concurrent readers and writers

Fine-grained locks: not just one lock around the whole tree
Per-node read/write locks: many concurrent readers or one writer

Let's consider what locks we need for three operations

lookup: return the value associated with a key
insert: insert a value with a key
remove: remove a key and its value

Thread-Safe TreesThread-Safe Trees
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Data access rule: many readers, but at most one writer (a read-write lock)
For example, we can used a shared_mutex

shared_mutex.lock(): acquire exclusive (write) lock
shared_mutex.shared_lock(): acquire shared (read) lock

Each tree node has a shared_mutex; also, the root pointer does
Insertion  requires having exclusive access to  the parent (changing its null pointer)

Tree Node StructureTree Node Structure

shared_mutex root_lock;
node* root;

node* left; 
node* right; 
unsigned int key; 
void* data; 
shared_mutex rwlock;
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Use a helper function

Insert pseudocode                                                      Insert_at pseudocode

insert(unsigned int key, void* data)

insert_at(node* node, unsigned int key, void* data)

Inserting Into the TreeInserting Into the Tree

lock root pointer lock 
if root pointer is null: 
    insert at root 
    unlock root pointer lock 
    return 
else: 
    lock root node 
    unlock root pointer 
    insert_at(root_node)

if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Suppose we want to insert at the green point

ExampleExample
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Suppose we want to insert at the green point

ExampleExample

lock root pointer lock 
if root pointer is null: 
    insert at root 
    unlock root pointer lock 
    return 
else: 
    lock root node 
    unlock root pointer 
    insert_at(root_node)
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Suppose we want to insert at the green point

ExampleExample

lock root pointer lock 
if root pointer is null: 
    insert at root 
    unlock root pointer lock 
    return 
else: 
    lock root node 
    unlock root pointer 
    insert_at(root_node)
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Suppose we want to insert at the green point

ExampleExample

lock root pointer lock 
if root pointer is null: 
    insert at root 
    unlock root pointer lock 
    return 
else: 
    lock root node 
    unlock root pointer 
    insert_at(root_node)
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Suppose we want to insert at the green point

ExampleExample
if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Suppose we want to insert at the green point

ExampleExample
if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Suppose we want to insert at the green point

ExampleExample
if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Suppose we want to insert at the green point

ExampleExample
if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Suppose we want to insert at the green point

ExampleExample
if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Suppose we want to insert at the green point

ExampleExample
if (key < node.key): 
    if node.left == NULL: 
        insert at node.left 
        unlock node 
    else: 
        lock node.left 
        unlock node 
        insert_at(node.left) 
else: 
    if node.right == NULL: 
        insert at node.right 
        unlock node 
    else: 
        lock node.right 
        unlock node 
        insert_at(node.right)
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Deletion is much harder...

Three cases (two easy)

1. Node to delete is leaf: delete it, set parent pointer to null

2. Node to delete has one child: delete it, set parent pointer to its child

3. Node to delete has two children: find successor leaf, replace with this node

DeletionDeletion
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Case 1 Case 2 Case 3

Node to delete



Need to hold 4 locks!

1.  Parent of node to be deleted

2. Node to be deleted

3. Parent of node to be moved

4. Node to be moved

Hard Deletion CaseHard Deletion Case

Case 3
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Need to hold 4 locks!

1.  Parent of node to be deleted

2. Node to be deleted

3. Parent of node to be moved

4. Node to be moved

Basic pseudocode

Hard Deletion CaseHard Deletion Case

Case 3
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find node to delete, hold lock and parent lock 
find successor of node, hold lock and parent lock 
change node's parent to point to successor 
change successor to point to node's children 
release node parent lock 
release node lock 
release successor parent lock 
release successor lock



What if the successor isn't a leaf?
It can't have both children (or successor would be left child)

swap node with successor
swap successor with its child

Another Edge CaseAnother Edge Case
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What are the advantages of coarse grained locks?
What are the advantages of fine grained locks?

Fine-Grained Versus Coarse-Grained LocksFine-Grained Versus Coarse-Grained Locks
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Thread-Safe Data StructuresThread-Safe Data Structures
Common data structure libraries are rarely thread-safe

Each user of the library has its own atomicity requirements
Trying to cover all of them would be a terrible library
Applications hand-design thread-safe data structures

Application-level control of concurrency allows the application do decide on tradeoff
between concurrency and overhead

Fine-grained locking is good for high concurrency, but costs a lot if only one thread
uses the data structure
Coarse-grained locking keeps overhead low, but can be a bottleneck under high
concurrency (large atomic sections)
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Question PeriodQuestion Period
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