
Principles of Computer Systems

Spring 2019

Stanford University

Computer Science Department

Lecturer: Chris Gregg

PDF of this presentation

Lecture 18: MapReduceLecture 18: MapReduce

1

https://web.stanford.edu/class/cs110/static/lectures/18-mapreduce.pdf

MapReduce is a parallel, distributed programming model and implementation used to
process and generate large data sets.

The map component of a MapReduce job typically parses input data and distills it
down to some intermediate result.
The reduce component of a MapReduce job collates these intermediate results and
distills them down even further to the desired output.
The pipeline of processes involved in a MapReduce job is captured by the below
illustration:

The processes shaded in yellow are programs specific to the data set being processed,
whereas the processes shaded in green are present in all MapReduce pipelines.
We'll invest some energy over the next several slides explaining what a mapper, a
reducer, and the group-by-key processes look like.

Lecture 18: MapReduceLecture 18: MapReduce

2

Here is an example of a map executable—written in Python—that reads an input file and
outputs a line of the form <word> 1 for every alphabetic token in that file.

The above script can be invoked as follows to generate the stream of words in Anna
Karenina:

import sys
import re

pattern = re.compile("^[a-z]+$") # matches purely alphabetic words
for line in sys.stdin:
 line = line.strip()
 tokens = line.split()
 for token in tokens:
 lowercaseword = token.lower()
 if pattern.match(lowercaseword):
 print '%s 1' % lowercaseword

myth61:$ cat anna-karenina.txt | ./word-count-mapper.py
happy 1
families 1
are 1
... // some 340000 words omitted for brevity
to 1
put 1
into 1

Lecture 18: MapReduceLecture 18: MapReduce

3

groupbykey contributes to all MapReduce pipelines, not just this one. Our group
bykey.py executable—presented on the next slide—assumes the mapper's output has

been sorted so multiple instances of the same key are more easily grouped together, as
with:

myth61:$ cat anna-karenina.txt | ./word-count-mapper.py | sort
a 1
a 1
a 1
a 1
a 1 // plus 6064 additional copies of this same line
...
zigzag 1
zoological 1
zoological 1
zoology 1
zu 1
myth61:$ cat anna-karenina.txt | ./word-count-mapper.py | sort | ./group-by-key.py
a 1 1 1 1 1 // plus 6064 more 1's on this same line
...
zeal 1 1 1
zealously 1
zest 1
zhivahov 1
zigzag 1
zoological 1 1
zoology 1
zu 1

Lecture 18: MapReduceLecture 18: MapReduce

4

Presented below is a short (but dense) Python script that reads from an incoming stream
of key-value pairs, sorted by key, and outputs the same content, save for the fact that all
lines with the same key have been merged into a single line, where all values themselves
have been collapsed to a single vector-of-values presentation.

The implementation relies on some nontrivial features of Python that don't exist in C
or C++. Don't worry about the implementation too much, as it's really just here for
completeness.
Since you know what the overall script does, you can intuit what each line of it must
do.

from itertools import groupby
from operator import itemgetter
import sys

def read_mapper_output(file):
 for line in file:
 yield line.strip().split(' ')

data = read_mapper_output(sys.stdin)
for key, keygroup in groupby(data, itemgetter(0)):
 values = ' '.join(sorted(v for k, v in keygroup))
 print "%s %s" % (key, values)

Lecture 18: MapReduceLecture 18: MapReduce

5

A reducer is a problem-specific program that expects a sorted input file, where each line
is a key/vector-of-values pair as might be produced by our ./groupbykey.py script.

The above reducer could be fed the sorted, key-grouped output of the previously
supplied mapper if this chain of piped executables is supplied on the command line:

import sys

def read_mapper_output(file):
 for line in file:
 yield line.strip().split(' ')

for vec in read_mapper_output(sys.stdin):
 word = vec[0]
 count = sum(int(number) for number in vec[1:])
 print "%s %d" % (word, count)

myth61:$ cat anna-karenina.txt | ./word-count-mapper.py | sort \
 | ./group-by-key.py | ./word-count-reducer.py
a 6069
abandon 6
abandoned 9
abandonment 1
...
zoological 2
zoology 1
zu 1

Lecture 18: MapReduceLecture 18: MapReduce

6

Now that you know a bit about the MapReduce algorithm, let's chat about your final
assignment for the quarter. It will be due on Wednesday, June 5th at midnight, but there
will not be a late day penalty for handing it in by Thursday at midnight (handing it in
Friday will incur the usual 90% max, and Saturday will be the 60% max).
The assignment implements the MapReduce algorithm using the myth machines as

workers.
We have given you a robust start to the program, but it will involve understanding a fair
amount of code.
As with the proxy-server assignment, there are four individual tasks -- handle each one in
turn for the best flow through the assignment.
You will be adding a ThreadPool to the assignment, and you will be fully implementing

the "reduce" part of the assignment. Some of the map part of the assignment has been
written for you, but you need to do a bit more work there, as well.

Lecture 18: MapReduce Assignment (last assignment!)Lecture 18: MapReduce Assignment (last assignment!)

7

All of the output for your assignment will go into a files directory that you create as
follows:

You only have to run this once for the assignment. Before you run a test, you should clear
this directory, as follows:

There are five executables that will be created when you run make:

wordcountmapper and wordcountreducer are already written for you. You

will modify files that will contribute to mr, mrm, and mrr, (map-reduce, map-reduce-

mapper, and map-reduce-reducer, respectively).

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

myth57:$ make directories

make filefree

myth57:$ find . -maxdepth 1 -type f -executable
./mr
./mrm
./mrr
./word-count-mapper
./word-count-reducer

8

There are, as you can imagine, many parameters you can have (number of mappers,
number of mappers, number of reducers, paths, etc., so there is a configuration file that
you will use. One example is as follows:

See the assignment details for a description of each line. You can modify the keys and
values as you wish to test.
If you look at the samples/odysseyfull directory, you will see twelve files, which

comprise of the full Odyssey book in twelve parts:

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

myth57:$ cat odyssey-full.cfg
mapper word-count-mapper
reducer word-count-reducer
num-mappers 8
num-reducers 4
input-path /usr/class/cs110/samples/assign8/odyssey-full
intermediate-path files/intermediate
output-path files/output

myth57:$ ls -lu samples/odyssey-full
total 515
-rw------- 1 poohbear operator 59318 Mar 7 09:31 00001.input
-rw------- 1 poohbear operator 43041 Mar 7 09:31 00002.input
-rw------- 1 poohbear operator 42209 Mar 7 09:31 00003.input
...
-rw------- 1 poohbear operator 42157 Mar 7 09:31 00011.input
-rw------- 1 poohbear operator 41080 Mar 7 09:31 00012.input

9

Let's see an example run with the solution executables:

There is a plethora of communication between the machine we run on and the other
myths.
Output ends up in the files/ directory.

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

myth57:$ make filefree
rm -fr files/intermediate/* files/output/*

myth57:$./samples/mr_soln --mapper ./samples/mrm_soln --reducer ./samples/mrr_soln --config odyssey-full.cfg

Determining which machines in the myth cluster can be used... [done!!]
Mapper executable: word-count-mapper
Reducer executable: word-count-reducer
Number of Mapping Workers: 8
Number of Reducing Workers: 4
Input Path: /usr/class/cs110/samples/assign8/odyssey-full
Intermediate Path: /afs/.ir.stanford.edu/users/c/g/cgregg/cs110/spring-2019/assignments/assign8/files/intermediate
Output Path: /afs/.ir.stanford.edu/users/c/g/cgregg/cs110/spring-2019/assignments/assign8/files/output
Server running on port 48721

Received a connection request from myth59.stanford.edu.
Incoming communication from myth59.stanford.edu on descriptor 6.
Instructing worker at myth59.stanford.edu to process this pattern: "/usr/class/cs110/samples/assign8/odyssey-full/00001.input"
Conversation with myth59.stanford.edu complete.
Received a connection request from myth61.stanford.edu.
Incoming communication from myth61.stanford.edu on descriptor 7.

... LOTS of lines removed

Remote ssh command on myth56 executed and exited with status code 0.
Reduction of all intermediate chunks now complete.
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/spring-2019/assignments/assign8/files/output/00000.output hashes to 13585898109251157014
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/spring-2019/assignments/assign8/files/output/00001.output hashes to 1022930401727915107
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/spring-2019/assignments/assign8/files/output/00002.output hashes to 9942936493001557706
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/spring-2019/assignments/assign8/files/output/00003.output hashes to 5127170323801202206

... more lines removed

10

The map phase of mr has the 8 mappers (from the .cfg file) process the 12 files processed

by wordcountmapper and put the results into files/intermediate:

If we look at 00012.00028, we see:

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

myth57:$ ls -lu files/intermediate/
total 858
-rw------- 1 cgregg operator 2279 May 29 09:29 00001.00000.mapped
-rw------- 1 cgregg operator 1448 May 29 09:29 00001.00001.mapped
-rw------- 1 cgregg operator 1927 May 29 09:29 00001.00002.mapped
-rw------- 1 cgregg operator 2776 May 29 09:29 00001.00003.mapped
-rw------- 1 cgregg operator 1071 May 29 09:29 00001.00004.mapped
...lots removed
-rw------- 1 cgregg operator 968 May 29 09:29 00012.00027.mapped
-rw------- 1 cgregg operator 1720 May 29 09:29 00012.00028.mapped
-rw------- 1 cgregg operator 1686 May 29 09:29 00012.00029.mapped
-rw------- 1 cgregg operator 2930 May 29 09:29 00012.00030.mapped
-rw------- 1 cgregg operator 2355 May 29 09:29 00012.00031.mapped

myth57:$ head -10 files/intermediate/00012.00028.mapped
thee 1
rest 1
thee 1
woes 1
knows 1
grieve 1
sire 1
laertes 1
sire 1
power 1

This file represents the words in
00012.input that hashed to 28

modulo 32 (because we have 8
mappers * 4 reducers)
Note that some words will appear
multiple times (e.g., "thee")

11

If we look at 00005.00028, we can also see "thee" again:

This makes sense because "thee" also occurs in file 00005.input (these files are not

reduced yet!)
"thee" hashes to 28 modulo 32, so it will end up in any of the .00028 files if occurs in the

input that produced that file.
To test a word with a hash, you can run the hasher program, located .here

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

myth57:$ head -10 files/intermediate/00005.00028.mapped
vain 1
must 1
strand 1
cry 1
herself 1
she 1
along 1
head 1
dayreflection 1
thee 1

myth57:$./hasher thee 32
28

12

https://web.stanford.edu/class/cs110/examples/map-reduce/hasher.cc

Let's test the starter code:

If we look in files/intermediate, we see files without the secondary split:

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

myth57:~$ make directories filefree
// make command listings removed for brevity
myth57:~$ make
// make command listings removed for brevity
myth57:~$./mr --mapper ./mrm --reducer ./mrr --config odyssey-full.cfg --map-only --quiet
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00001.mapped hashes to 2579744460591809953
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00002.mapped hashes to 15803262022774104844
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00003.mapped hashes to 15899354350090661280
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00004.mapped hashes to 15307244185057831752
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00005.mapped hashes to 13459647136135605867
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00006.mapped hashes to 2960163283726752270
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00007.mapped hashes to 3717115895887543972
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00008.mapped hashes to 8824063684278310934
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00009.mapped hashes to 673568360187010420
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00010.mapped hashes to 9867662168026348720
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00011.mapped hashes to 5390329291543335432
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00012.mapped hashes to 13755032733372518054
myth57:~$

myth57:~$ $ ls -l files/intermediate/
total 655
-rw------- 1 cgregg operator 76280 May 29 10:26 00001.mapped
-rw------- 1 cgregg operator 54704 May 29 10:26 00002.mapped
-rw------- 1 cgregg operator 53732 May 29 10:26 00003.mapped
-rw------- 1 cgregg operator 53246 May 29 10:26 00004.mapped
-rw------- 1 cgregg operator 53693 May 29 10:26 00005.mapped
-rw------- 1 cgregg operator 53182 May 29 10:26 00006.mapped
-rw------- 1 cgregg operator 54404 May 29 10:26 00007.mapped
-rw------- 1 cgregg operator 53464 May 29 10:26 00008.mapped
-rw------- 1 cgregg operator 53143 May 29 10:26 00009.mapped
-rw------- 1 cgregg operator 53325 May 29 10:26 00010.mapped
-rw------- 1 cgregg operator 53790 May 29 10:26 00011.mapped
-rw------- 1 cgregg operator 52207 May 29 10:26 00012.mapped

It turns out that "thee" is only in 11
of the 12 files:

also, files/output is empty:

$ grep -l "^thee " files/intermediate/*.mapped \
 | wc -l
11

myth57:$ ls -l files/output/
total 0

13

Task 1: Read and understand these files:

mrm.cc
mapreduceworker.h/cc
mapreducemapper.h/cc
mrmessages.h/cc
mapreduceserver.h/cc

mrm.cc is the entry point, and is the client of the MapReduce server. The server invokes

the program remotely (i.e., on a different myth machine), and it then reaches out to the

server for an input file to process, notifies the server when it has succeeded (or failed),
and also sends progress messages back to the server.
The reason this works across the myths is because of the shared AFS file system -- each

separate computer has the same files.
mapreducemapper provides a class, MapReduceMapper, that keeps track of the

hostname and virtual pid of the server, and it relies on a custom protocol for the
communication.
MapReduceMapper subclasses another class, MapReduceWorker, which also is a base

class for MapReduceReducer .

mapreduceserver.cc provides a single mapper, and launches a server to respond

to the mapper.

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

14

Task 2: Spawn multiple mappers
How do you span multiple mappers?

You use a ThreadPool!

You'll need to modify spawnMappers so it will create nummappers of them.

You should add a ThreadPool to MapReduceServer. There is already a method

called orchestrateWorkers which uses a handleRequest method, which you

can wrap into a .schedule call.

Make sure you provide enough mutex support so that the threads don't corrupt each

other.

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

15

Task 3: Hashing keys and creating multiple intermediate files

At this point, your program still only creates the 000xx.mapped files.

You will need to use the hash<string> class (see the example for usage) to

hash each key.
You will need to update buildMapperCommand to add another argument, which will

be the number of hash codes used by each mapper when generating the intermediate
files for each input file.
You will also need to update mrm.cc to accept another argument in its argv, and this

means you'll need to modify the MapReducerMapper constructor likewise.

 The number of hash codes should be the number of mappers times the number of
reducers (this is arbitrary, but helps to surface concurrency issues).

hasher

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

16

https://web.stanford.edu/class/cs110/examples/map-reduce/hasher.cc

Task 4: Implement spawnReducers

This is an open-ended part of the assignment -- if you understand the purpose of
MapReduce, it should be clear what needs to get done.

Each reducer needs to collate the collection of intermediate files of keys with the
same hash code, sort it, and then group the sorted collation by key, then invoke the
reducer executable to produce output files.
You may use the python programs located at /usr/class/cs110/lecture
examples/mapreduce/ (e.g., groupbykey.py, wordcount
reducer.py) to do some of this work for you. To run them, you could use the

subprocess function we've created in class, but it is going to be easier to use the
system function, which is already used in parts of the assignment. See the

 to see how easy it is to use.

Hint 2 in this section is important:

systemexample.cc example

Lecture 18: MapReduce AssignmentLecture 18: MapReduce Assignment

Once the MapReduce job has transitioned to the reduce phase, you should rely on the
server to respond to reducer client requests with file name patterns instead of

actual file names. The server, for instance, might send an absolute file name pattern
ending in files/intermediate/00001 as an instruction to the reducer that it

should gather, collate, sort, and group all intermediate files ending in .00001.mapped
before pressing all of it through the reduce executable to generate
files/output/00001.output.

17

https://web.stanford.edu/class/cs110/examples/map-reduce/system-example.cc

