
Principles of Computer Systems

Autumn 2019

Stanford University

Computer Science Department

Instructors: Chris Gregg

 Philip Levis

PDF of this presentation

Lecture 19: Events, Threads, and Asynchronous I/OLecture 19: Events, Threads, and Asynchronous I/O

1

https://web.stanford.edu/class/cs110/static/lectures/19-events-threads.pdf

We've seen a lot of system calls that block, yielding the CPU and causing a thread to sleep
until the system call completes

Reading a file from a disk: read(2)

Writing data to a network socket: write(2)

Waiting for a process to complete: waitpid(2)

Locking a mutex: pthread_mutex_lock(2)

 Some system calls can (if nothing's broken) block for a little while:

Reading a file from a disk: read(2)

Opening a network connection: connect(2)

Others (if nothing's broken) can block forever:

Reading from a network socket: read(2)

Accepting a network connection: accept(2)

Waiting for a process to complete: waitpid(2)

Locking a mutex: pthread_mutex_lock(2)

BlockingBlocking

2

Recall from when we discussed signals, when a user thread calls a system call, it traps
into the operating system and starts using its kernel stack
When the operations on the kernel stack complete, the OS restores the user CPU
context and resumes the user thread
If the operations on the kernel stack block, then the user stack is blocked as well: it will
not resume until the kernel stack completely unwinds

What Blocking DoesWhat Blocking Does

user

stack

kernel

kernel

stack

system call

user CPU context

accept()

3

Recall from when we discussed signals, when a user thread calls a system call, it traps
into the operating system and starts using its kernel stack
When the operations on the kernel stack complete, the OS restores the user CPU
context and resumes the user thread
If the operations on the kernel stack block, then the user stack is blocked as well: it will
not resume until the kernel stack completely unwinds

What Blocking DoesWhat Blocking Does

user

stack

kernel

kernel

stack

system call

user CPU context

blocks

also
blocks

accept()

4

While a thread is blocked, it cannot do any useful work
When all threads are blocked, the service can't do anything at all

Number of outstanding operations <= number of threads

This can be a performance problem
Example: your web proxy cache (some made up, approximate numbers)

Average time to download a remote page: 50ms
Time to serve a page from local cache: 1ms
Time spent on CPU serving a page from local cache: 100 microseconds
Even when always hitting cache, each thread is only 10% active (other 90% is spent
writing to network socket, 100us/1ms)
When cache is cold, threads are 0.2% active (other 99.8% is spent in network I/O)
Maximum cache throughput on an 8 core machine needs up to 4,000 threads!

500 threads/core * 8 cores

Blocking Limits Concurrency and PerformanceBlocking Limits Concurrency and Performance

5

By default, Linux allows up to 8MB of memory for a thread stack

4,000 threads * 8MB = 32GB!
This memory isn't physically allocated, it's only allocated as it's used

Don't allocate large objects on the stack!

The kernel won't let you allocate more threads than can be stored in physical memory

Any algorithm that iterates across a list of threads will be slow

Linux uses very fine-grained queues, e.g. per-socket, so it can scale

Imagine if, instead, all threads waiting on I/O were on a single queue, and the
kernel had to iterate across it to figure out which one to resume

Be careful with notify_all()

To allow parallelism across 4,000 threads, you need fine-grained locks (more than the
997 mutexes you implemented)
4,000 stacks can lead to a lot of cache misses

Each thread will put part of its stack into the cache, evicting cache lines for other
thread stacks

You can design systems that use 4,000 threads, but doing so is very hard and you have to
be very careful in your implementation

Why 4,000 Threads Can Be a ProblemWhy 4,000 Threads Can Be a Problem

6

An alternative concurrency model is to use events rather than threads
Event-driven systems have no blocking calls

A call starts an operation (e.g., start a read)
The system invokes an event callback when the operation completes

Archetypical examples of event-driven systems

GUIs: every button/menu item invokes a callback function on your application
Web pages/Javascript: events from user interactions (e.g., mouse movement, clicks,
etc.) invoke callbacks

Because thread never blocks, it can fully use a core by starting operations and handling
completion callbacks
This is more than non-blocking operations, which just says it won't block: non-blocking by
itself has to use spin loops

Example of non-blocking: waitpid with WNOHANG

Code must enter a spin loop (wastes CPU cycles) to wait for work to do

Example of event-driven execution: signals with sigsuspend

Code can suspend until there is work to do (an event)

Events: High Concurrency with One ThreadEvents: High Concurrency with One Thread

7

Example Event-Driven Boost Code: Echo ServerExample Event-Driven Boost Code: Echo Server
class session {
public:
 session(boost::asio::io_service& io_service) :
 socket_(io_service) {} // construct a TCP-socket from io_service
 tcp::socket& socket(){return socket_;}

 void start(){
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 }

private:
 void handle_read(const boost::system::error_code& error,
 size_t bytes_transferred){
 if (!error)
 // initiate asynchronous write; handle_write() is callback-function
 boost::asio::async_write(socket_,
 boost::asio::buffer(data_,bytes_transferred),
 boost::bind(&session::handle_write,this,
 boost::asio::placeholders::error));
 else
 delete this;
 }

 void handle_write(const boost::system::error_code& error){
 if (!error)
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 else
 delete this;
 }

 boost::asio::ip::tcp::socket socket_;
 enum { max_length=1024 };
 char data_[max_length];
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

start

async_read_some

handle_read

async_write

handle_write

8

Example Event-Driven Boost Code: Echo ServerExample Event-Driven Boost Code: Echo Server
class session {
public:
 session(boost::asio::io_service& io_service) :
 socket_(io_service) {} // construct a TCP-socket from io_service
 tcp::socket& socket(){return socket_;}

 void start(){
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 }

private:
 void handle_read(const boost::system::error_code& error,
 size_t bytes_transferred){
 if (!error)
 // initiate asynchronous write; handle_write() is callback-function
 boost::asio::async_write(socket_,
 boost::asio::buffer(data_,bytes_transferred),
 boost::bind(&session::handle_write,this,
 boost::asio::placeholders::error));
 else
 delete this;
 }

 void handle_write(const boost::system::error_code& error){
 if (!error)
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 else
 delete this;
 }

 boost::asio::ip::tcp::socket socket_;
 enum { max_length=1024 };
 char data_[max_length];
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

start

handle_read

async_write

handle_write

code returns here, can do other work

async_read_some

9

Huge debate in 1995-2004, with birth of Internet services: threads or events?

The DebateThe Debate

1995

10

Huge debate in 1995-2004, with birth of Internet services: threads or events?

The DebateThe Debate

1995

2002

11

Huge debate in 1995-2004, with birth of Internet services: threads or events?

The DebateThe Debate

1995

2002

2003

12

Problems with threads

Synchronization bugs (data races, deadlock, etc.)
Limits concurrency to number of threads
Stacks are expensive
Possible interleaving of threads is hard to reason about

Problems with events

State across events can't be stored on stack ("stack ripping")
Possible interleaving of events is hard to reason about
Sequential execution is lost, has to be manually traced across code

TradeoffsTradeoffs

13

Problems with threads

Synchronization bugs (data races, deadlock, etc.)
Limits concurrency to number of threads
Stacks are expensive
Possible interleaving of threads is hard to reason about

Problems with events

State across events can't be stored on stack ("stack ripping")
Possible interleaving of events is hard to reason about
Sequential execution is lost, has to be manually traced across code

TradeoffsTradeoffs

14

Stack RippingStack Ripping
class session {
public:
 session(boost::asio::io_service& io_service) :
 socket_(io_service) {} // construct a TCP-socket from io_service
 tcp::socket& socket(){return socket_;}

 void start(){
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 }

private:
 void handle_read(const boost::system::error_code& error,
 size_t bytes_transferred){
 if (!error)
 // initiate asynchronous write; handle_write() is callback-function
 boost::asio::async_write(socket_,
 boost::asio::buffer(data_,bytes_transferred),
 boost::bind(&session::handle_write,this,
 boost::asio::placeholders::error));
 else
 delete this;
 }

 void handle_write(const boost::system::error_code& error){
 if (!error)
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 else
 delete this;
 }

 boost::asio::ip::tcp::socket socket_;
 enum { max_length=1024 };
 char data_[max_length];
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

start

handle_read

async_write

handle_write

Any state needed across asynchronou
calls must be stored in object (e.g., data_

async_read_some

15

Problems with threads

Synchronization bugs (data races, deadlock, etc.)
Limits concurrency to number of threads
Stacks are expensive
Possible interleaving of threads is hard to reason about

Problems with events

State across events can't be stored on stack ("stack ripping")
Possible interleaving of events is hard to reason about
Sequential execution is lost, has to be manually traced across code

TradeoffsTradeoffs

Of these seven tradeoff points, 5 of them (greyed out) relate to
programming challenges and programmer reasoning: they can be
ameliorated through software design, testing, and methodology.
They're questions of taste.

2 of them (bold) are unavoidable performance issues.
16

Need concurrency at a finger granularity than threads
Requires asynchronous I/O: system calls do not block

Other system calls allow code to check when outstanding operations have completed

Can be used as the underlying API for event driven execution
Can be used as it is for synchronously checking for completion

Asynchronous I/OAsynchronous I/O

17

Asynchronous I/O: The epoll Family of System CallsAsynchronous I/O: The epoll Family of System Calls
Linux has a scalable I/O event notification mechanism called epoll that can monitor a set

of file descriptors to see whether there is any I/O ready for them. There are three system
calls, as described below, that form the api for epoll.

 This function creates an epoll object and returns a file descriptor. The only valid flag is
EPOLL_CLOEXEC, which closes the descriptor on exec as you might expect.

 This function configures which descriptors are watched by the object, and op can be

EPOLL_CTL_ADD, EPOLL_CTL_MOD, or EPOLL_CTL_DEL. We will investigate

struct epoll_event on the next slide.

 This function waits for any of the events being monitored, until there is a timeout. It

returns up to maxevents at once and populates the events array with each event

that has occurred.

1

int epoll_create1(int flags);

int epoll_ctl(int epfd, int op, int fd, struct epoll_event
*event);

int epoll_wait(int epfd, struct epoll_event *events, int
maxevents, int timeout);

1
https://en.wikipedia.org/wiki/Epoll 18

https://en.wikipedia.org/wiki/Epoll

The struct epoll_event
is defined as follows:

struct epoll_event {
 uint32_t events; /* Epoll events */
 epoll_data_t data; /* User data variable */
};

A union is a data structure that can hold a single data type out of a set of data types, and it
does so in a single memory location. The actual memory size of the union is that of the
largest data type that can be stored.

typedef union epoll_data {
 void *ptr;
 int fd;
 uint32_t u32;
 uint64_t u64;
} epoll_data_t;

epoll_data_t is a

typedef'd union, defined as

follows:

The events member is a bit mask, and for our purposes, we care about three values:

 EPOLLIN : the file is available for reading

EPOLLOUT : the file is available for writing

EPOLLET : This sets the file descriptor to be "edge triggered", meaning that events

are delivered when there is a change on the descriptor (e.g., there is data to be read).

Lecture 20: The epoll Family of System CallsLecture 20: The epoll Family of System Calls

19

A watch set is by default level-triggered: epoll notifies while the condition is true
You can also set it to be edge-triggered: epoll notifies when the condition becomes true

Level Triggered (LT) vs. Edge Triggered (ET)Level Triggered (LT) vs. Edge Triggered (ET)

data to read

no data

edge trigger edge trigger

level trigger level trigger

20

static const unsigned short kDefaultPort = 33333;
int main(int argc, char **argv) {
 int server = createServerSocket(kDefaultPort);
 if (server == kServerSocketFailure) {
 cerr << "Failed to start server. Port " << kDefaultPort << " is probably already in use." << endl;
 return 1;
 }

 cout << "Server listening on port " << kDefaultPort << endl;
 runServer(server);
 return 0;
}

Small example of using epoll to call functions when file descriptors are able to input or

output data.
Let's start with main:

main simply sets up a server socket, and then calls the runServer function, which we

will look at next.

epoll Example: An Asynchronous Web Serverepoll Example: An Asynchronous Web Server

21

Server Architecture OverviewServer Architecture Overview
Use asynchronous I/O to handle many connections and requests from a single thread of control
A core loop calls epoll_wait() to receive events from kernel

An event on the server socket means there's a new connection: accept it
To read requests, use a static map of strings to store requests, keyed on file descriptor

As parts of requests are read, append them to the string
When a request is complete, erase it and wait for write events

To write responses, use a static map of integers to store write position, keyed on file descriptor

As parts of response is written, update write position
When a response is complete, erase it and close the socket

22

Setting Up Asynchronous I/OSetting Up Asynchronous I/O

static void runServer(int server) {
 setAsNonBlocking(server); // fcntl(descriptor, F_SETFL, fcntl(descriptor, F_GETFL) | O_NONBLOCK)
 int ws = buildInitialWatchSet(server);

The runServer function first converts the server socket to be nonblocking, and sets
up the epoll watch around the socket:

static const int kMaxEvents = 64;
static int buildInitialWatchSet(int server) {
 int ws = epoll_create1(0);
 struct epoll_event info = {.events = EPOLLIN | EPOLLET, .data = {.fd = server}};
 epoll_ctl(ws, EPOLL_CTL_ADD, server, &info);
 return ws;
}

Let's jump to the buildInitialWatchSet function:

This function creates an epoll watch set around the supplied server socket. We register
an event to show our interest in being notified when the server socket is available for
read (and accept) operations via EPOLLIN, and we also note that the event notifications

should be edge triggered (EPOLLET) which means that we'd only like to be notified that

data becomes available to be read: we'll need to be sure to read all of it.

23

Waiting for Asynchronous I/O EventsWaiting for Asynchronous I/O Events

 struct epoll_event events[kMaxEvents];
 while (true) {
 int numEvents = epoll_wait(ws, events, kMaxEvents, /* timeout = */ -1);

Continuing where we left off with runServer, the function next creates an array of

struct epoll_event objects to hold the events we may encounter.

Then it sets up a while (true) loop and sets up the only blocking system call in the

server, epoll_wait().

We never want to time out on the call, and when nothing interesting is happening with
our watch set, our process is put to sleep in a similar fashion to waits we have seen

previously in class.
Multiple events can trigger at the same time, and we get a count (numEvents) of the

number of events put into the events array.

Note how this is different than event-driven execution with callbacks: your code is
responsible for the core loop that waits on events, and determining how to respond to
them. Event-driven libraries generally build on top of epoll_wait().

(continued on next slide)

24

Core Event Handling LoopCore Event Handling Loop
When one or more of our file descriptors in the watch set trigger, we handle the events in
the events array, one at a time. For our server, there could be three different events:

If the event was a connection request, events[i].data.fd will be the server's file

descriptor, and we accept a new connection (we will look at that function shortly):
 for (int i = 0; i < numEvents; i++) {
 if (events[i].data.fd == server) {
 acceptNewConnections(ws, server);
 }

 } else if (events[i].events & EPOLLIN) { // we're still reading the client's request
 consumeAvailableData(ws, events[i].data.fd);
 }

If the event indicates that it has incoming data (EPOLLIN), then we need to consume the

data in the request:

 } else { // events[i].events & EPOLLOUT
 publishResponse(events[i].data.fd);
 }
 }
 }
}

If the event indicates that it has outgoing data (EPOLLOUT), then we publish data to that

file descriptor:

25

Handling a Connection Request: Add Socket to Watch ListHandling a Connection Request: Add Socket to Watch List
Let's look at the acceptNewConnections function next.

We may have multiple connections that have come in at once, so we need to accept all of
them. Therefore, we have a while(true) loop that continues until there are no more
connections to be made:

static void acceptNewConnections(int ws, int server) {
 while (true) {
 int clientSocket = accept4(server, NULL, NULL, SOCK_NONBLOCK);
 if (clientSocket == -1) return;

 struct epoll_event info = {.events = EPOLLIN | EPOLLET, .data = {.fd = clientSocket}};
 epoll_ctl(ws, EPOLL_CTL_ADD, clientSocket, &info);
 }
}

When we make a connection, we update our epoll watch list to include our client socket
and the request to monitor it for input (again, as an edge-triggered input).
We use the epoll_ctl system call to register the new addition to our watch list:

26

Handling Data Reception: Read Until Request is CompleteHandling Data Reception: Read Until Request is Complete
We have two more functions to look at for our server: consumeAvailableData and

publishResponse. The first is more complicated, but also happens first, so let's look at

it now.
The consumeAvailableData function attempts to read in as much data as it can from

the server, until either there isn't data to be read (meaning we have to read it later), or
until we get enough information in the header to respond. The second condition is met
when we receive two newlines, or "\r\n\r\n":

static const size_t kBufferSize = 1;
static const string kRequestHeaderEnding("\r\n\r\n");
static void consumeAvailableData(int ws, int client) {
 static map<int, string> requests; // tracks what's been read in thus far over each client socket
 size_t pos = string::npos;
 while (pos == string::npos) {
 char buffer[kBufferSize];
 ssize_t count = read(client, buffer, kBufferSize);
 if (count == -1 && errno == EWOULDBLOCK) return; // not done reading everything yet, so return
 if (count <= 0) { close(client); break; } // passes? then bail on connection, as it's borked
 requests[client] += string(buffer, buffer + count);
 pos = requests[client].find(kRequestHeaderEnding);
 if (pos == string::npos) continue;

Notice the static map<> variable inside the function. This map persists across all calls to

the function, and so it tracks partially read data for each client (stack ripping).

If we still have data to read, but we have not yet gotten to our header ending, we keep
reading data (because it is available). (continued on next slide) 27

Finishing Reading a Request: Write a ResponseFinishing Reading a Request: Write a Response
Once we receive the header ending, we can log how many active connections we have,
and then we also print out the header we've received.
Next, we modify our epoll watch event to also trigger when data needs to be written on
the client (this will happen when we publish our response).

 cout << "Num Active Connections: " << requests.size() << endl;
 cout << requests[client].substr(0, pos + kRequestHeaderEnding.size()) << flush;
 struct epoll_event info = {.events = EPOLLOUT | EPOLLET, .data = {.fd = client}};
 epoll_ctl(ws, EPOLL_CTL_MOD, client, &info); // MOD == modify existing event
 }

 requests.erase(client);
}

Notice that we don't break out of the while loop at this point! We continue looping until
we have read all of the available data; otherwise, epoll_wait will not trigger again,

because there is still data waiting for us (e.g., the rest of the response). The only time we
exit the loop (see the previous slide) is when we have no more data to read, at which
point we also close the connection.
Also notice (previous slide) that we return when we encounter a potential block -- we
don't close the connection, and we don't erase the client entry in our requests map. Recall

that as a static variable, the map persists, as does the requests map entry.
Once we exit the loop because there is no more data, we erase the client entry in our
requests map, because it is no longer needed.

28

Sending a ResponseSending a Response
Finally, let's turn our attention to publishResponse.

Our response needs to be a proper HTTP response, and we supplement this with our HTML
code for the website we will push to the client.

static const string kResponseString("HTTP/1.1 200 OK\r\n\r\n"
 "Thank you for your request! We're working on it! No, really!
"
 "
<img src=\"http://vignette3.wikia.nocookie.net/p__/images/e/e0/"
 "Agnes_Unicorn.png/revision/latest?cb=20160221214120&path-prefix=protagonist\"/>");

static void publishResponse(int client) {
 static map<int, size_t> responses;
 responses[client]; // insert a 0 if key isn't present
 while (responses[client] < kResponseString.size()) {
 ssize_t count = write(client, kResponseString.c_str() + responses[client],
 kResponseString.size() - responses[client]);
 if (count == -1 && errno == EAGAIN) return;
 if (count == -1) break;
 assert(count > 0);
 responses[client] += count;
 }

 responses.erase(client);
 close(client);
}

As we saw in consumeAvailableData, we have a static map, this time populated with the

file descriptor of the client we are responding to, with the values corresponding to the number
of bytes we have sent. Remember, no blocking allowed!
We attempt to write all of the data in the response, but if we can't, we don't block and we
return, knowing that the responses map will persist until the next time we call the function to

push data. We erase the entry from the map and close the connection once we have sent all the
data for the response (which may be after multiple calls to the function).

29

Server Architecture OverviewServer Architecture Overview
Use asynchronous I/O to handle many connections and requests from a single thread of control
A core loop calls epoll_wait() to receive events from kernel

An event on the server socket means there's a new connection: accept it
To read requests, use a static map of strings to store requests, keyed on file descriptor

As parts of requests are read, append them to the string
When a request is complete, erase it and wait for write events

To write responses, use a static map of integers to store write position, keyed on file descriptor

As parts of response is written, update write position
When a response is complete, erase it and close the socket

This very simple server allows for such a simple implementation (e.g., static maps in the read
and write event handlers): real (larger, more complex) systems are usually tricker.

30

Threads vs. Events, RevisitedThreads vs. Events, Revisited
Using epoll_wait() allows a single thread to handle hundreds or thousands of requests

Limited to what a single core can do

Forking multiple processes to run epoll_wait() loops can use all the cores in a system: this

is what many systems do today
Recall the problems with events:

State across events can't be stored on stack ("stack ripping")
Sequential execution is lost, has to be manually traced across code
Possible interleaving of events is hard to reason about

Let's look at how each problem is dealt with today.

31

State across events can't be stored on stack ("stack ripping")State across events can't be stored on stack ("stack ripping")
Usually, there is a tradeoff between small, short term state (stored on the stack), and larger or
longer-term state, stored on the heap

You don't want to read a 4MB web page onto the stack
A session may persist for a long time (30+ seconds)

Having it in a global table allows a server to track and manage current sessions
Having it on the stack makes it private and more difficult to monitor/manage

You don't want to store temporary variables (e.g., current position) in the heap: you either
have to allocate the union of all such possible variables (a lot of dead space), or are
malloc'ing small values (e.g., a size_t)

Standard approach today: coroutines, or small, dynamically allocated, per-session stacks

Coroutines allow a session to store local variables across asynchronous I/O calls
Coroutines make asynchronous I/O calls look blocking: they block in user space, rather than
the kernel
Store larger, long-lived state on heap
Not preemptible: a coroutine in a long computation can hog a thread

32

Example Event-Driven Boost Code: Echo ServerExample Event-Driven Boost Code: Echo Server
class session {
public:
 session(boost::asio::io_service& io_service) :
 socket_(io_service) {} // construct a TCP-socket from io_service
 tcp::socket& socket(){return socket_;}

 void start(){
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 }

private:
 void handle_read(const boost::system::error_code& error,
 size_t bytes_transferred){
 if (!error)
 // initiate asynchronous write; handle_write() is callback-function
 boost::asio::async_write(socket_,
 boost::asio::buffer(data_,bytes_transferred),
 boost::bind(&session::handle_write,this,
 boost::asio::placeholders::error));
 else
 delete this;
 }

 void handle_write(const boost::system::error_code& error){
 if (!error)
 // initiate asynchronous read; handle_read() is callback-function
 socket_.async_read_some(boost::asio::buffer(data_,max_length),
 boost::bind(&session::handle_read,this,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred));
 else
 delete this;
 }

 boost::asio::ip::tcp::socket socket_;
 enum { max_length=1024 };
 char data_[max_length];
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

start

handle_read

async_write

handle_write

async_read_some

33

Example Coroutine Boost Code: Echo ServerExample Coroutine Boost Code: Echo Server

boost::asio::spawn(my_strand, do_echo);

void do_echo(boost::asio::yield_context yield) {
 try {
 char data[128];
 for (;;) {
 std::size_t length =
 my_socket.async_read_some(boost::asio::buffer(data), yield);
 if (ec == boost::asio::error::eof) {
 break; //connection closed cleanly by peer
 else if (ec) {
 throw boost::system::system_error(ec); //some other error
 }

 boost::asio::async_write(my_socket, boost::asio::buffer(data, length), yield);
 f (ec == boost::asio::error::eof) {
 break; //connection closed cleanly by peer
 else if (ec) {
 throw boost::system::system_error(ec); //some other error
 }
 }
 }
 catch (std::exception& e) {
 std::cerr<<"Exception: "<<e.what()<<"\n";
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

session

async_write

async_read_some

Coroutines also restore sequential code: a linear code sequence appears sequential

34

Origin of C++ Coroutines (end of Threads vs. Events, 2003)Origin of C++ Coroutines (end of Threads vs. Events, 2003)

35

Basic Capriccio IdeaBasic Capriccio Idea
Write sequential code with synchronous I/O
I/O blocks in user space, not the kernel: an underlying asynchronous I/O loop resumes code
when its I/O operation completes
Rather than allocate the stack as a contiguous region of memory, allocate it as a linked list of
heap-allocated structures

A "thread" uses only the stack that it needs
Compiler support sizes these allocations
A lot of the systems magic is about making this stack efficient

Don't allocate on each function call: allocate small chunks and allocate more when
current calls need more than is left

A thread at 4 points in execution
C0-C3 are "checkpoints", little bits of
added code that check if a new block of
stack needs to be allocated
A, B, C, D, E are function calls that use
up stack

36

Possible Interleaving of Events is Hard to Reason AboutPossible Interleaving of Events is Hard to Reason About
Coroutines allow sequential code to appear sequential while storing temporary variables
within a heap-allocated coroutine

Sequential code snippets look like threaded code
Many sequential code snippets can be multiplexed onto a single thread of control
Great use case: web requests, each of which is a stand-alone request/response

But not all code is sequential

GUIs can have complex interleaving of user events
Network protocols can have complex interleaving of messages

There is no silver bullet

Lots of modeling approaches: finite state machines
Lots of error checking approaches: code analysis, software verification
This problem is analogous to reasoning about thread interleaving: it is a fundamental
challenge of concurrent software

37

Other Modern Techniques: Promises in JavaScript (for Node.js)Other Modern Techniques: Promises in JavaScript (for Node.js)
Languages like Javascript allow you to easily write callbacks inline (like C++ lambdas): this can
become really messy with many levels of callbacks: sequential code becomes nested

dboper.insertDocument(db, { name: "Test", description: "Test"},
 "test", (result) => {
 console.log("Insert Document:\n", result.ops);

 dboper.findDocuments(db, "test", (docs) => {
 console.log("Found Documents:\n", docs);

 dboper.updateDocument(db, { name: "Test" },
 { description: "Updated Test" }, "test",
 (result) => {
 console.log("Updated Document:\n", result.result);

 dboper.findDocuments(db, "test", (docs) => {
 console.log("Found Updated Documents:\n", docs);

 db.dropCollection("test", (result) => {
 console.log("Dropped Collection: ", result);

 client.close();
 });
 });
 });
 });
 });

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

38

Other Modern Techniques: Promises in JavaScript (for Node.js)Other Modern Techniques: Promises in JavaScript (for Node.js)
A JavaScript Promise is the result of a future computation: the then() method allows you to

specify what to do when it completes.

database.insertDocument(db, { name: "Test",
 description: "Chill Out! Its just a test program!"},
 "test")
 .then((result) => {
 return database.findDocuments(db, "test");
 })
 .then((documents) => {
 console.log("Found Documents:\n", documents);
 return database.updateDocument(db, { name: "Test" },
 { description: "Updated Test" }, "test");
 })
 .then((result) => {
 console.log("Updated Documents Found:\n", result.result);
 return database.findDocuments(db, "test");
 })
 .then((docs) => {
 console.log("The Updated Documents are:\n", docs);
 return db.dropCollection("test");
 })
 .then((result) => {
 return client.close();
 })
 .catch((err) => alert(err));
})
.catch((err) => alert(err));

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

39

Other Modern Techniques: Web Workers in JavaScript (for Browser)Other Modern Techniques: Web Workers in JavaScript (for Browser)
Browser JavaScript engines have a single thread of control
A long computation causes the entire page to hang
Solution: Web Workers for background processing (HTML5)

var i = 0;

function timedCount() {
 i = i + 1;
 postMessage(i);
 setTimeout("timedCount()",500);
}

timedCount();

1
2
3
4
5
6
7
8
9

<!DOCTYPE html>
<html>
<body>

<p>Count numbers: <output id="result"></output></p>
<button onclick="startWorker()">Start Worker</button>
<button onclick="stopWorker()">Stop Worker</button>

<script>
var w;

function startWorker() {
 if (typeof(Worker) !== "undefined") {
 if (typeof(w) == "undefined") {
 w = new Worker("demo_workers.js");
 }
 w.onmessage = function(event) {
 document.getElementById("result").innerHTML = event.data;
 };
 } else {
 document.getElementById("result").innerHTML = "Sorry! No Web Worker
 }
}

function stopWorker() {
 w.terminate();
 w = undefined;
}
</script>

</body>
</html>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

demo_workers.js web page

starts a background worker
and registers an event handler
for its messages

40

Other Modern Techniques: Futures in RustOther Modern Techniques: Futures in Rust
A Rust Future allows code to block on the generation of a result, not the start of the operation.
For example, you can issue two requests in parallel, then wait for their completion.

Both invocations of new_example_future() will start executing

Execution will block on future1.join(future2): we can add arbitrary code at line 11

extern crate futures;
extern crate future_by_example;

fn main() {
 use futures::Future;
 use futures::future::ok;
 use future_by_example::new_example_future;

 let future1 = new_example_future();
 let future2 = new_example_future();
 // Can do more computation here
 let joined = future1.join(future2);
 let (value1, value2) = joined.wait().unwrap();
 assert_eq!(value1, value2);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

41

Asynchronous I/O and Event-Driven CodeAsynchronous I/O and Event-Driven Code
Blocking I/O with threads is simple to write but doesn't scale well

Number of outstanding operations <= number of threads

Asynchronous I/O allows a thread to have many I/O operations in parallel

Asynchronous because code handles completion at some later time, such that it is not
synchronized with the start of the request

Asynchronous I/O leads to event-driven programming
Event-driven programming complicates sequential code

A linear series of I/O calls is spread across multiple functions, which a programmer must
manually string together in their head

Coroutines are the standard C++ middle ground: looks like threads, but many coroutines can
execute on a single thread
Other languages have different approaches
The tension between simplicity and performance has been an open challenge in systems code
for the past 25 years

42

