
CS110 Midterm Exam

Question Booklet

CS110 Winter 2020 – Instructors: Chris Gregg and
Nick Troccoli

You may not use any internet devices. You will be graded on
functionality – but good style saves time and helps graders
understand what you were attempting. You have 80 minutes.
We hope this exam is an exciting journey.

Note: DO NOT WRITE in this booklet. Only work in the answer
booklet will be graded.

1) Pipe Queue 20 Points/80 Total

Note: you may need to scroll horizontally to fully to view blocks of code.

Using what you know about UNIX pipes, use a single pipe in a single process to finish writing
the C++ class below called PipeQueue , that acts as a queue data structure for C++ strings. In
other words, strings are enqueued and dequeued with first-in-first-out behavior. Here's an
example of how this data structure might be used:

[CODE START]
int main(int argc, char *argv[]) {
 PipeQueue q;
 q.enqueue("Hello,");
 q.enqueue("World!");
 while (!q.empty()) {
 cout << q.dequeue() << endl;
 }
 return 0;
}
[CODE END]

As you are well aware, C-strings are null-terminated, but in order to know the size of a C-string,
you must read one character at a time until you find the null-terminator. Another type of string,
called a length-prefixed string is used in some programming languages (most notably, in the
Pascal language), and for this problem, you will use this type of string. A length-prefixed string
encodes the length of the string at the beginning of the data for the string. Once the size is read,
the number of bytes remaining (containing the actual string data) can be read.

In Linux, the default capacity of the write end of a pipe is 2 (65,535) bytes, meaning that we
are safe using a 16-byte unsigned short for the length of a string in our queue. Therefore, when
enqueuing, the strings should be prefixed by a 2-byte value for the length of the string data, and
when dequeueing, the first two bytes will be the 2-byte prefix, as well. Note: we will not take
points off for endianness issues for the prefix (though if you were to code this up for real you
would need to check this carefully). You simply need to ensure that both bytes end up being
written to, and read from, the pipe at the appropriate time.

For enqueue , you may use write , dprintf , or stdio_filebuf and ostreams , and you must
ensure that all bytes are correctly written to the pipe. Note, however, that you must use write
to write the 2-byte short for the length - the reason for this is if you use dprintf or other

16

similar functions, it will write the number as a string with one character per digit, whereas we
wish to write the number as a 2 byte short. You may assume that write writes all requested
bytes.

For dequeue , you must use the read function, and you are not allowed to use any loops in the
method - doing so will result in no credit. You may assume that read reads all requested bytes.

You must ensure all file descriptors (other than STDIN, STDOUT and STDERR) are closed when
no longer used. You may assume the following:

all system calls succeed
there will be space in the pipe when enqueueing
there will be at least one element in the queue when dequeueing

Here is the provided interface and partial implementation. You will complete the constructor ,
destructor , enqueue , and dequeue functions. You should only add code within the specified
methods.

[CODE START]
class PipeQueue {
 public:
 PipeQueue(); // constructor
 bool empty();

 /** The enqueue method writes a
 * length-prefixed string to the pipe file
 * descriptor backing the queue. The prefix
 * should be a 2-byte (16-bit) number.
 * Updates state to reflect a new string was
 * enqueued.
 *
 * @param s: a C++ string to enqueue
 * @return: void
 */
 void enqueue(string s);

 /** The dequeue method reads a length-prefixed
 * string from the pipe file descriptor
 * backing the queue. The prefix will be a
 *. 2-byte (16-bit) number. Updates state to
 * reflect a new string was dequeued.
 *
 * @param: none

 * @return: a C++ string dequeued from the queue
 */
 string dequeue();

 ~PipeQueue(); // destructor

 private:
 int fds[2];
 size_t size;
};

bool PipeQueue::empty() {
 return size == 0;
}

PipeQueue::PipeQueue() : size(0) {
 // TODO: write constructor
}

PipeQueue::~PipeQueue() {
 // TODO: write destructor
}

void PipeQueue::enqueue(string s) {
 // TODO: write enqueue function
}

string PipeQueue::dequeue() {
 // TODO: write dequeue function

}
[CODE END]

[ANSWER START]
PipeQueue::PipeQueue() : size(0) {
 // TODO: write constructor
}

PipeQueue::~PipeQueue() {
 // TODO: write destructor
}

void PipeQueue::enqueue(string s) {
 // TODO: write enqueue function
}

string PipeQueue::dequeue() {
 // TODO: write dequeue function
}
[ANSWER END]

2) Fork Chat 20 Points/80 Total

Note: you may need to scroll horizontally to fully to view blocks of code.

In this problem, you're going to complete a chat program in C that allows two users logged onto
the same machine (e.g., myth55) to chat with each other by each running their own instance of
the program. The program works by using temporary files that are readable by each user, and it
achieves asynchronous behavior (i.e., a user can receive a message while typing) by spawning a
child process via fork .

The program works as follows:

1. To launch the program, a user with ID userid provides ID other_id of the person they
want to chat with as a command-line argument. Two files are opened (or created):

/tmp/[userid] that the user will write chat text into, and that the other user will
read from ([userid] is replaced with the user's actual userid , e.g., cgregg).
/tmp/[other_id] that the other user will write chat text into, and that the user will
read from ([other_id] is replaced with the command line argument, e.g.,
troccoli).

2. The initial parent process acts as the writer, and forks a child process that will act as the
reader:

The reader process reads lines from /tmp/[other_id] and prints Message:
[MESSAGE] (where [MESSAGE] is the message just read) on the screen after each
line read.
The writer process reads from stdin and writes one line at a time to
/tmp/[userid] .

3. When the user types ctrl-d on a line on its own, the program gracefully ends, meaning
both the reader and writer processes. The other user's program continues to run until that
user also types ctrl-d . In order to terminate, the child must receive a signal from the
parent (in this case, a SIGUSR1 signal, as defined in part (E) below). All memory must be
correctly cleaned up and all file descriptors except for stdin , stdout and stderr
must be closed when the child process exits.

The starter code for this problem is shown below. You will answer questions about it and
complete portions of it in the following parts. For writing code, you should fill in code only in the
locations specified, and should not add code outside these locations. You may assume that all
system calls succeed.

[CODE START]
#define kMaxLine 256

static int read_fd;

int read_line(int fd, char *buf, int buf_len) {
 // TODO: Your code here
 return 0;
}

void sigusr1_handler(int sig) {
 // TODO: Your code here
}

int main(int argc, char *argv[]) {
 if (argc < 2) {
 printf("Usage:\n\t%s other_id\n", argv[0]);
 return 0;
 }

 char *write_filename; // will need to free
 char *read_filename; // will need to free

 printf("Welcome to chat! Say something!\n\n");

 /* afterwards, read_filename and write_filename point
 * to malloc'ed memory storing the corresponding filenames.
 * Its implementation is omitted, but assumed to work.
 */
 populate_filenames(argv[1], &read_filename,
 &write_filename);

 umask(0);
 pid_t pid_or_zero = fork();
 if (pid_or_zero == 0) { // child
 read_fd = open(read_filename, O_RDONLY | O_CREAT,
 0666);
 lseek(read_fd, 0, SEEK_END); // start cursor at end
 // of file in case of
 // resumed chat

 // TODO: Your code here
 } else {
 int write_fd;

 write_fd = open(write_filename, O_WRONLY | O_CREAT,
 0666);
 lseek(write_fd, 0, SEEK_END); // start cursor at end
 // of file in case of
 // resumed chat

 // TODO: Your code here
 }
 return 0;
}
[CODE END]

Part A.
Answer the following questions about the starter code:

1. The read_fd file descriptor is defined globally. Why might this be the case?
2. The comment above the call to populate_filenames says that it uses malloc to provide

memory for write_filename and read_filename . Based on what we know about virtual
memory and fork() , how must we go about freeing this memory?

3. The first thing the child process does is to open a read-only file and create it if it doesn't
exist. If the program we are chatting with is the one writing, why does this program need to
create the file if it doesn't exist?

[ANSWER START]
1.
2.
3.
[ANSWER END]

Part B.
Write the read_line function for this program. The function should populate buf with
characters read from fd until receiving a newline, or until the end of the file. The string in buf
should be a properly null-terminated C-string.

[CODE START]
int read_line(int fd, char *buf, int buf_len) {
 // reads up to and including a newline (or EOF) from fd
 // replaces newline with null terminator
 // only reads up to buf_len - 1 bytes
 // @param fd: the file descriptor to read from
 // @param buf: the buffer to populate
 // @param buf_len: the size of the buffer
 // @return: the number of bytes read, not including
 // the newline. Can be 0 if at end of file

 // TODO: Your code here
}
[CODE END]

[ANSWER START]
int read_line(int fd, char *buf, int buf_len) {
 // TODO: Your code here
}
[ANSWER END]

Part C.
Write the code for the parent process (after the fork) below. The parent process continually
reads lines from STDIN_FILENO and writes each line (including a newline) to write_fd . Lines
are limited to kMaxLine characters, including the null-terminator.

If the user types ctrl-d , this closes stdin , and the program should gracefully finish.

Before the parent process returns:

All memory must be correctly cleaned up.
All file descriptors except for stdin , stdout and stderr must be closed.
The parent process must send a SIGUSR1 signal to the child to notify it to exit.
The parent must wait for the child to finish before itself exiting.

[CODE START]
} else {
 int write_fd;
 write_fd = open(write_filename, O_WRONLY | O_CREAT,
 0666);
 lseek(write_fd, 0, SEEK_END); // start cursor at end of file
 // of file in case
 // of resumed chat
 // TODO: Your code here

}
[CODE END]

[ANSWER START]
} else {
 int write_fd;
 write_fd = open(write_filename, O_WRONLY | O_CREAT, 0666);
 lseek(write_fd, 0, SEEK_END);

 // TODO: Your code here

}
[ANSWER END]

Part D.
Write the signal handler for the SIGUSR1 signal.

[CODE START]
void sigusr1_handler(int sig) {
 // TODO: Your code here

}
[CODE END]

[ANSWER START]
void sigusr1_handler(int sig) {
 // TODO: Your code here
}
[ANSWER END]

Part E.
Write the code for the child process below. The child process continually reads lines from
read_fd and prints the following for each line read (where [MESSAGE] is the message read):

Message: [MESSAGE]

Lines are limited to kMaxLine characters, including the null-terminator. If an attempt to read a
line returns 0 bytes, then the process does not print anything, and instead sleeps for 10000
microseconds, using the usleep(1000) function.

In order to terminate, the child must receive a signal from the parent (in this case, a SIGUSR1
signal, as defined in part (E) below). All memory must be correctly cleaned up and all file
descriptors except for stdin , stdout and stderr must be closed when the child process
exits.

[CODE START]
if (pid_or_zero == 0) { // child
 read_fd = open(read_filename, O_RDONLY | O_CREAT,
 0666);
 lseek(read_fd, 0, SEEK_END); // start cursor at end
 // of file in case
 // of resumed chat
 // TODO: Your code here

}
[CODE END]

[ANSWER START]
if (pid_or_zero == 0) { // child
 read_fd = open(read_filename, O_RDONLY | O_CREAT, 0666);
 lseek(read_fd, 0, SEEK_END);

 // TODO: Your code here
}
[ANSWER END]

3) Signal Mystery 20 Points/80 Total

Note: you may need to scroll horizontally to fully to view blocks of code.

Assume that the user sahami runs the following program. List all potential outputs. Assume that
all system calls succeed (including execvp). You should also assume that calls to fprintf are
atomic. You may not make any assumptions about when a process is definitely running on, or
definitely off the processor.

Note: The whoami program prints the current userid (in this case, sahami) and a newline to
stdout .

[CODE START]
int pid_or_zero;

void sig_handler(int sig) {
 fprintf(stderr, "I am the %s\n",
 pid_or_zero == 0 ? "child" : "parent");
}

int main(int argc, char *argv[]) {
 signal(SIGUSR1, sig_handler);

 int fds[2];
 pipe(fds);
 pid_or_zero = fork();

 if (pid_or_zero == 0) {
 close(fds[0]);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);
 char *argv[] = {"whoami", NULL};
 kill(getppid(), SIGUSR1);
 execvp("whoami", argv); // assume this always works
 kill(getppid(), SIGUSR1);
 exit(0);
 }
 kill(pid_or_zero, SIGUSR1);
 close(fds[1]);

 waitpid(pid_or_zero, NULL, 0);

 char userid[9]; // max userid is 8
 for (int i = 0; i < 9; i++) {
 read(fds[0], userid + i, 1);
 if (userid[i] == '\n') {
 userid[i] = '\0';
 break;
 }
 }
 printf("%s\n", userid);
 close(fds[0]);
 return 0;
}
[CODE END]

[ANSWER START]
List the possible outputs:

Output 1:

Output 2:

etc...
[ANSWER END]

4) Short Answer 20 Points/80 Total

Note: you may need to scroll horizontally to fully to view blocks of code.

Part A.
For assignment 2, we saw that a directory is modeled the same as a file, except its contents are
a list of unsorted directory entries. A fellow filesystem designer suggests storing the entries in
sorted order. In 3 sentences or less for each, explain 1 benefit and 1 drawback in terms of
performance of this change.

[ANSWER START]

[ANSWER END]

Part B.
We have seen that an inode stores only 8 block numbers, and if a file has more block numbers
than this, we must use approaches such as singly and doubly indirect blocks to store them. A
fellow filesystem designer suggests adding more space in each inode to store block numbers. In
three sentences or less for each, explain 1 benefit and 1 drawback in terms of performance of
increasing the number of block numbers stored in an inode.

[ANSWER START]

[ANSWER END]

Part C.
For each bullet below, specify the range of file block numbers (as a number or mathematical
expression) that could be stored there, assuming the same filesystem implementation as in
assign2. File block number is defined the same as in assign2 - it is a data block index for the file,
starting at 0; so the first block of file data has number 0, the second block of file data has
number 1, etc. As an example, the first block number entry in an inode using direct addressing
stores file block number 0, and the second block number entry in an inode using direct
addressing stores file block number 1. You do not need to explain your answers.

The first singly-indirect block in an inode using indirect addressing
The doubly-indirect block in an inode using indirect addressing

[ANSWER START]

[ANSWER END]

Part D.
Name the primary difference between threads and processes, and explain why this difference
could be seen as a benefit and as a drawback for each of threads and processes.

[ANSWER START]

[ANSWER END]

Part E.
Your coworker has implemented a program using threads that they need your help debugging.
Specifically, they say that sometimes the program infinite loops, but they are not sure why! You
take a look at their code, which is shown below:

[CODE START]
 1 void worker(int& counter) {
 2 while (true) {
 3 if (counter == 10) break;
 4 counter += 1;
 5 }
 6 }

 7 int main(int argc, char *argv[]) {
 8 int counter = 2;
 9 thread worker1(worker, ref(counter));
10 thread worker2(worker, ref(counter));
11 worker1.join();
12 worker2.join();
13 return 0;
14 }
[CODE END]

Explain the race condition that makes it possible for the code above to infinite loop.
Your coworker learns that they should add a mutex lock around a critical region to prevent
the race condition. Assuming we declare a mutex in main that we pass by reference to
each of the threads, note the single line number immediately before which we should lock,
and the two line numbers immediately after which we should unlock.

[ANSWER START]

[ANSWER END]

5) Function Reference
Note: you may need to scroll horizontally to fully to view blocks of code.

[CODE START]
// filesystem access
int open(const char *path, int oflag, ...); // returns descriptor

ssize_t read(int fd, char buffer[], size_t len); // returns num read,
 0 at eof

ssize_t write(int fd, char buffer[], size_t len); // returns num writ
ten

int printf(const char *format, ...); // prints to STDOUT

int dprintf(int fd, const char *format, ...); // prints to file descr
iptor

int fprintf(FILE *stream, const char *format, ...); // prints to stre
am

int close(int fd); // ignore retval

int pipe(int fds[]); // argument should be array of length 2, ignore
retval

int pipe2(int fds[], int flags); // common flag: O_CLOEXEC

int dup2(int old, int new); // ignore retval

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

// exceptional control flow and multiprocessing
pid_t fork();

pid_t waitpid(pid_t pid, int *status, int flags);

typedef void (*sighandler_t)(int sig);

sighandler_t signal(int signum, sighandler_t handler); // ignore retv
al

int sigsuspend(const sigset_t *mask); // ignore retval

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset); // i
gn. retval

int execvp(const char *path, char *argv[]); // ignore retval

int kill(pid_t pid, int sig); // ignore retval

int setpgid(pid_t pid, pid_t pgid); // ignore retval

#define WIFEXITED(status) // macro
#define WIFSTOPPED(status) // macro
#define WEXITSTATUS(status) // macro
[CODE END]

