

●
●

○

●

●

●
●

●

●
●

●
●
●

●
●

2, 3 1, 74

“A.txt” -- inode 0
“B.txt” -- inode 1

●
●
●
●

BOOT +
SUPER

BLOCKS

INODE
TABLE DATA, INDIRECT, & UNALLOCATED BLOCKS

Inode 1
Inode 2

Inode 16

●
●

●
●
●

i1 a.txt

i1 b.txt

i2 symlinked.txt

DIRECTORY (~/cool_dir)
Inodes

i1
refcnt: 2

i2 - symlink
refcnt: 1

Blocks

The quick
brown fox...

~/cool_dir/b.txt

0 1 2 ... 8 9

In Out Err ...

pipe

0 1 2 ... 8 9

In Out Err ... Pipe (read
end)

Pipe (write
end)

int fds[2];
pipe(fds);
// fds[0] has 8, fds[1] has 9
// Q: How do we redirect STDOUT to the pipe?

dup2

0 1 2 ... 8 9

In Out Err ... Pipe (read
end)

Pipe (write
end)

// int dup2(int oldfd, int newfd);
// have newfd point to what oldfd points to
dup2(fds[1], STDOUT_FILENO)

close

0 1 2 ... 8 9

In Out Err ... Pipe (read
end)

Pipe (write
end)

close(fds[1]);
// Q: What happens when we call
dup(STDOUT_FILENO)?

dup

0 1 2 ... 8 9 10

In Out Err ... Pipe (read
end)

Pipe (write
end)

// Returns a new fd that points to what the
// fd passed in is pointing to.
dup(STDOUT_FILENO);

In Out Err ... shared.txt
mode: r
cursor: 0
refcount: 2
vnode: *

a b c d e f g

In Out Err ... shared.txt
mode: r
cursor: 4
refcount: 2
vnode: *

a b c d e f g

In Out Err ... shared.txt
mode: r
cursor: 4
refcount: 1
vnode: *

a b c d e f g

●
●
●
●
●

●

●

When you think you have your own private
address space but the next process also
has the same private address space

●

●

●

●

●

●

int fork_child(char **argv) {
pid_t pid = fork();
if (pid == 0) {

execvp(argv[0], argv);
exit(0);

}

int status;
waitpid(pid, &status, 0);
return WEXITSTATUS(status);

}

fork

waitpid

execve
(?)

●

●

●

●

●

●

●

●

●

●

●

fork(); fork(); fork(); fork(); fork(); fork();

●
int main(int argc, char *argv[]) {

pid_t pid = fork();
if (pid == 0) {

execvp(argv[0], argv);
}
int* status;
waitpid(pid, status, WNOHANG);
assert(WIFEXITED(*status));
return WEXITSTATUS(*status);

}

●

●

●

●
static void writeOutput(const char *array[]) {
 printf("Writing output to file named \"%s\".\n", array[0]);
 int outfile = open(array[0], O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 execvp(array[1], array+1);
 exit(0);
}

int main(int argc, char *argv[]) {
 char *array1[] = {“cal.txt”, “cal”, NULL};
 char *array2[] = {“date.txt”, “date”, NULL};
 writeOutput(array1); waitpid(-1, NULL, 0);
 writeOutput(array2); waitpid(-1, NULL, 0);
 return 0;
}

●

●

●

●

●

●

○

○

●

●

●

○

●

●

○ sighandler_t signal(int signum, sighandler_t handler);

●

●

○ sigset_t set;

○ int sigemptyset(sigset_t *set);

○ int sigaddset(sigset_t *set, int signum);

○ int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

static int sum = 0;
static int children = 0;
int main(int argc, char *argv[]) {
 for (int i = 0; i < 5; i++) {
 pid_t pid = fork();
 if (pid == 0) {
 // do nonsense work
 exit(i);
 }
 children++;
 }
 signal(SIGCHLD, &handle);
 while (children > 0) {
 // busy wait :(
 }
 cout << “sum: “ << sum << endl;
 return 0;
}

static void handle(int signal) {
 int status;
 waitpid(-1, &status, 0);
 assert(WIFEXITED(status));
 sum += WEXITSTATUS(status);
 children--;
 cout << “One child exited!” << endl;
}

static int sum = 0;
static int children = 0;
int main(int argc, char *argv[]) {
 signal(SIGCHLD, &handle);
 for (int i = 0; i < 5; i++) {
 pid_t pid = fork();
 if (pid == 0) {
 // do nonsense work
 exit(i);
 }
 sigset_t set;
 sigemptyset(&set);
 sigaddset(&set, SIGCHLD);
 sigprocmask(SIG_BLOCK, &set, NULL);
 children++;
 sigprocmask(SIG_UNBLOCK, &set, NULL);
 }
 while (children > 0) {
 // busy wait :(
 }
 cout << "sum: " << sum << endl;
 return 0;
}

static void handle(int signal) {
int status;
while (true) {

 if (waitpid(-1, &status, WNOHANG) <= 0) {
 break;
 }

 assert(WIFEXITED(status));
 sum += WEXITSTATUS(status);
 children--;
 cout << "One child exited!" << endl;
}

}

//ATOMICALLY:
 sigprocmask(SIG_SETMASK, &mask, &old);
 pause(); // wait for signal to wake us up
 sigprocmask(SIG_SETMASK, &old, NULL);

kill-puzzle
static pid_t pid;
static int counter = 0;

static void parentHandler(int unused) {
 counter += 2;
 printf("counter = %d\n", counter);
}

static void childHandler(int unused) {
 counter += 1;
 printf("counter = %d\n", counter);
 kill(getppid(), SIGUSR1);
}

1. Can this program DEADLOCK?
BONUS: How many outputs are there?

int main(int argc, char *argv[]) {
 signal(SIGUSR1, parentHandler);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, childHandler);
 sigset_t mask; sigemptyset(&mask);
 sigsuspend(&mask);
 return 0;
 }

 kill(pid, SIGUSR1);
 waitpid(pid, NULL, 0);
 counter += 3;
 printf("counter = %d\n", counter);
 return 0;
}

●
○

●
○

●
●

●
●

#include <iostream>
#include <thread>

using namespace std;

int main()
{
 thread t([](a, b){
 cout << a + b << endl;
 }, 3, 3);
 t.join();
 return 0;
}

static float balance = 100.0;

void withdraw(float money) {
if (money <= balance)

balance -= money;
}

int main()
{
 thread t2(withdraw, 100);
 thread t2(withdraw, 100);
 t1.join();
 t2.join();
 return 0;
}

●
●

●
○
○

static float balance = 100.0;

void withdraw(float money) {
if (money <= balance)

balance -= money;
}

int main()
{
 thread t1(withdraw, 100);
 thread t2(withdraw, 100);
 t1.join();
 t2.join();
 return 0;
}

static float balance = 100.0;
static mutex lock;

void withdraw(float money) {
lock.lock();
if (money <= balance)

balance -= money;
lock.unlock();

}

int main()
{
 thread t1(withdraw, 100);
 thread t2(withdraw, 100);
 t1.join();
 t2.join();
 return 0;
}

