CS110 Winter 2020
Midterm Review

Shrey Gupta + Andrew Benson

Slides contributed by Kristine Guo, Peter McEvoy, Armin
Namavari, Ryan Eberhardt, Grace Hong, Hemanth Kini

Exam Date & Time

Friday, February 14, 2020
NVIDIA Aud: A-S
Cubberley Aud: T-Z
1:30pm - 2:50pm

Exam Deets

e Bring your laptop and charger

e Exam will be administered on Bluebook
o Download software before exam.

e If you don’t have a working laptop, we need to
know by midnight tonight

e [Exam material emphasizes assignments, sections,
lecture, readings (in order of decreasing emphasis)

Outline

Part 1: Filesystems Part 2: Multiprocessing
® Inodes, Directories, Links e Processes and Virtual Memory
e File descriptor table, open file table, e fork, execvp, waitpid
vnode table e Pipes and multiprocessing
e System calls (open, close, read, write,
dup, dup2, pipe) Part 4: Scheduling
Part 3: Signals Part 5: Threads
e Signal blocking and handlers e Thread Syntax
e Race conditions and sigsuspend ® Race Conditions, Mutex

Part 1. Filesystems

Filesystem Layers

/home/shreyg/a.txt

“A.txt” -- inode 0

“B.txt” -- inode 1

Inodes & Files

Inode 1
BOOT + Inode 2

SUPER DATA, INDIRECT, & UNALLOCATED BLOCKS
BLOCKS

Inode 16

Super block contains info on the type and config of the filesystem
Inodes contain all the metadata regarding a file/directory.

Data blocks contain actual file data or directory entries

Indirect blocks contain lists of block numbers to data/indirect blocks

What’s in an inode?

struct inode {

¥

uintlo_t
uint8_t
uint8_t
uint8_t
uint8_t
uintle_t
uintle_t
uintle_t
uintleo_t

1_mode; //

1_nlink; 4
1_uid; //
1_gid; 74

1_s1ze0; £
1_sizel; //
i_addr[8]; //
i_atime[2]; //
i_mtime[2]; //

bit vector of file type and permissions
number of references to file

owner

group of owner

most significant byte of size

lower two bytes of size

device addresses constituting file
access time

modify time

(From ino.h, assign2)

Direct Addressing file size <= 8 * 512

512 512 512 512 512 512 512 512
bytes bytes bytes bytes bytes bytes bytes bytes

Singly Indirect Addressing 8 * 512 < file size <=7 * 256 * 512

. . Doubly
Single Indirect Block Nums Indirect Block
p Al ~, Num

/ 0 1 254 255

512 bytes 512 bytes 512 bytes 512 bytes

. . 7% 256 * 512 < file size <=
Doubly Indirect Addressing 7+ 556+ 512 + 256 * 256 * 512

: ; Doubly
Single Indirect Block Nums e o
4 A ~, Num

512 bytes 512 bytes

Directories

Inode table

Durectory

e Directories are just a special type of file
e Payload blocks consist of (inode block number, name) pairs

Links

e Hard links vs. symbolic (soft) links
e All three of these links go to the same file!
e Can’t create hard link for directories (breaks pathnames, allows loops)

Inodes Blocks

DIRECTORY (~/cool_dir) i1
refcnt: 2

The quick

brown fox...

~/cool_dir/b.txt

1
i2 | symlinked.txt

‘
—
i2 - symlink

Process Control Blocks

Gesorpton tabe for process 1D 1000 descripton table for process 1D 1001

How the
operating

system
manages
HIES

e
mode
cursor
refeount

vnode

mode
cursor
refcount

vnode

mode
cursor
refcount

node
cursor
refcount

node
cursor
refoount

mode
cursor
refcount

node

cursor

vnode vnode vanode vnode vnode vnode

Open file table

~ L} - ‘ PO
type directory type terminal
refcount 1

foptrs

type regfile type regfile type regfile
refoount 1 refocount 1 refcount 3

fnptrs Inptrs

refocount 3

fnptrs

* % % *|% | % % * % iNPLrs | wlo ' % *| % %
incde

0755
10:12am
root

inode 0644 inode 0644 inode 0755
B:23pm 10:12am 9:1%pm
poohbear root cgregq

Vnode 1able

Filesystem

How System Calls Affect the File Tables

fd table

The Effect of pipe on the File Tables

fd table

Pipe (read @ Pipe (write
open end) end)

int fds[2];

pipe (fds);

// £ds[0] has 8, fds[1l] has 9

// Q: How do we redirect STDOUT to the pipe?

The Effect of dup2 on the File Tables

fd table

Pipe (read @ Pipe (write
open end) end)

// int dup2 (int oldfd, int newfd);
// have newfd point to what oldfd points to
dup?2 (fds[1], STDOUT FILENO)

The Effect of cl1ose on the File Tables

fd table

Pipe (read | Pipe (write
open end) end)

close (fds[1]);
// Q: What happens when we call
dup (STDOUT_FILENO) ?

The Effect of dup on the File Tables

fd table

Pipe (read @ Pipe (write
open end) end)

// Returns a new fd that points to what the
// fd passed in is pointing to.
dup (STDOUT_FILENO) 5

The Open File Table is Shared Across Processes

Q: Suppose the parent forks, then reads 4 bytes. What is the next byte the
child would read from shared.txt?
parent child

s shared.txt

a b c de f g

shared.txt
mode: r
cursor: 0

refcount: 2
vnode: *

The Open File Table is Shared Across Processes
A: ‘e’
Q: What changes in this picture if the child closes shared.txt?
parent child

shared.txt 3

a b c de f g

shared.txt
mode: r
cursor: 4

refcount: 2
vnode: *

The Open File Table is Shared Across Processes

A: The refcount drops to 1. The child no longer has an fd that points to the

open file table entry.
parent child

shared.txt 3

a b c de f g

shared.txt
mode: r
cursor: 4

refcount: 1
vnode: *

Part 2.1: Processes

Processes

Unique PID

Not-necessarily unique PGID
At least one thread

Its own file descriptor table
Its own Virtual Memory space

Processes

Virtualization

e DREAM: Every process
thinks it has its own
address space

® i.e,each process thinks it
has sole access to the
addresses ranging from
Ox00000000 to Oxffffffff

When you think you have your own private
address space but the next process also
has the same private address space

Virtual Memory b e ety

Address Address Address

e REALITY: Process address space Kernel Kernel Kernel

isn’t really where data lives s e e
e Translation facilitated by kernel Aasp:iRea) HnspiRem Hespi0ate)
on every “dereference” of an
address.

Text 0x00000060 Text 0x00000060 Text

MMU

physical memory

Questions

Suppose P1and P2 are separate process running /usr/bin/ls. Which of the
following are possible?

e Both P1and P2 call open(“foo.txt”) and in both the returned fd was 5.
e Both P1and P2 read 7 chars from the returned fd and read the same thing.
e Both P1and P2 store variable foo at virtual address Oxdeadbeef.

e Both P1and P2 store variable foo at physical address Oxdeadbeef.

Part 2.2:
Multiprocessing

Basic Paradigm

int fork child(char **argv) ({
pid t pid = fork():;
if (pid == 0) {
execvp (argv[0], argv); o)
exit (0) ;

int status;
waltpid (pid, é&status, 0);
return WEXITSTATUS (status) ;

fork()

e Duplicates almost everything: all of virtual memory, file descriptor table,
signal handlers, signal mask, etc (not pending signals)

e Return value: child pid for parent, O for child

e |lied above: virtual memory is copied lazily i.e. Copy on Write (CoW)

execvp() (and friends)

e Replaces memory-related things: all of virtual memory, signal handlers, etc
(not file descriptor table, pending signals, signal mask which are managed
by the kernel)

e Return value: doesn’t return unless error (e.g. unknown program)

waitpid()

e Block until change in child processes’ running state (by default: only
termination, but can detect stopped and signaled)

e Return value: -1 (error), 0 (WNOHANG specified and no children waiting), pid
(of child who changed state)

e |[fyou don’t reap, you'll have zombie children!

waitpid()

Terminated Signaled Stopped Continued
Request Detection <default> <default> WUNTRACED WCONTINUED
Check State WIFEXITED WIFSIGNALED WIFSTOPPED WIFCONTINUED
Additional Info WEXITSTATUS WTERMSIG WSTOPSIG <none>

e First row are flags for waitpid’s third argument, last two rows are macros
that take in the status.

e Also- WNOHANG, which makes waitpid return early if nothing has already

changed.

Questions

The following is from a commit Linus Torvalds made to Linux last Saturday.
fork(); fork(); fork(); fork(); fork(); fork();
How many processes does it create?

Review the following code. What possible issues could occur? (3-4 issues)

int main(int argc, char *argvl[]) {
pid t pid = fork();
if (pid == 0) {

execvp (argv([0], argv);
}
int* status;
waitpid(pid, status, WNOHANG) ;
assert (WIFEXITED (*status)) ;
return WEXITSTATUS (*status) ;

Part 2.3:
Multiprocess
Communication

How do processes communicate?

What we’ve seen in CS 110:
® pipes
® mmap

® signals

Pipes

® What happens in the following code?

static void writeOutput (const char *arrayl[]) {
printf ("Writing output to file named \"%s\".\n", array[0]);
int outfile = open(array[0], O WRONLY | O CREAT | O TRUNC, 0644);
dup2 (outfile, STDOUT FILENO) ;
close (outfile) ;
if (fork() > 0)
execvp (array[1l], array+tl);
exit (0) ;

return;

int main(int argc, char *argvl[]) {
char *arrayl[] = {“cal.txt”, “cal”, NULL};,
char *array2[] = {“date.txt”, “date”, NULL};
writeOutput (arrayl); waitpid(-1, NULL, O);
writeOutput (array2?2); waitpid(-1, NULL, O0);
return 0;

mmap

® Like malloc, but is able to allocate memory that is shared between processes (e.g. after fork()).

Process 1 Process 2

Physical (Shared) Physical Physical
Memory Page Memory Page Memory Page

CIAVISA TR
L HAN
KEICT IR s

What are signals?
Asynchronous notifications sent to a process by the kernel or another process.
e Created via kill() or raise() (what’s the difference?).
e Handled by signal handlers registered via signal).
e Can be blocked via sigprocmask().
e Can be awaited (e.g. sleep until signal) via sigsuspend().

e Examples: (why are these two lines separated?)
o SIGINT, SIGTSTP, SIGCONT, SIGCHLD

o SIGSTOP, SIGKILL

Signal Delivery

e If a process blocks a signal, delivery of the signal is delayed until it’s unblocked.
e |If a process is not on CPU during signal delivery, it is delivered once it is.

e Signals aren’t queued!

o The kernel tracks only what signals are delivered, not how many

e Signal handlers block the signal they are handling (e.g. can be interrupted by
other signals).

Signal Handlers

e A function _you_ write that can be registered to run upon signal delivery.

0 sighandler t signal (int signum, sighandler t handler) ;

e Since signals are async, the signal handler might be run at any time! => beware
of race conditions
e Avoid race conditions by blocking signals appropriately
O sigset t set;
0 1int sigemptyset (sigset t *set);
0 1int sigaddset (sigset t *set, int signum) ;

© 1int sigprocmask (int how, const sigset t *set, sigset t *oldset);

Signal Blocking (find the bugs)

static int sum = 0; static void handle (int signal) {
static int children = 0; int status;
int main(int argc, char *argvl[]) { waitpid (-1, é&status, 0);
for (int i1 = 0; i < 5; i++) { assert (WIFEXITED (status)) ;
pid t pid = fork(); sum += WEXITSTATUS (status) ;
if (pid == 0) { children--;
// do nonsense work cout << “One child exited!” << endl;
exit (1) }
}
children++;

}
signal (SIGCHLD, &handle);
while (children > 0) {
// busy wait : (
}
cout << “sum: “ << sum << endl;

return 0;

Signal Blocking (fixed!)

static int sum = 0; . . ; ;
static void handle (int signal) {

static int children = 0;
int main (int argc, char *argv[]) { int status;

o (aae o = 0F oL < 9 i) waitpid (-1, &status,)
pid t pid = fork(

if (pid == 0) {
// do nonsense work

) ;

assert (WIFEXITED (status)) ;

exit (i)
} sum += WEXITSTATUS (status) ;
children——;
cout << "One child exited!" << endl;
chitlldrentt=t; }

}
while (children > 0) {

// busy wait : (
}

cout << "sum: " << sum << endl;

return 0;

sigsuspend()
sigsuspend(&mask):

//ATOMICALLY:
sigprocmask (SIG_SETMASK, &mask, &old);
pause(); // wait for signal to wake us up
sigprocmask (SIG_SETMASK, &old, NULL) ;

Another kill-puzzle!

static pid t pid; int main(int argc, char *argv[]) {
static int counter = 0; signal (SIGUSR1, parentHandler) ;
if ((pid = fork()) == 0) {
static void parentHandler (int unused) { signal (SIGUSR1, childHandler);
counter += 2; sigset t mask; sigemptyset (&mask) ;
printf ("counter = %d\n", counter); sigsuspend (&mask) ;
} return O;

static void childHandler (int unused) {

counter += 1; kill (pid, SIGUSRI1);
printf ("counter = %d\n", counter); waitpid (pid, NULL, 0);
} printf ("counter = %d\n", counter);

return 0;
1. Can this program DEADLOCK? }

BONUS: How many outputs are there?

Part 4. Scheduling

Scheduling

(not emphasized on midterm)

dispatch

creation

Ready |

timeout

unblocking

Blocked

blocking

termination

Scheduling

e Process control block (PCB) - struct representing a process’ state
o What code it last was executing, register values, PID, etc

e PCBs put into one of:
o blocked queue, ready/runnable queue, running queue

What causes a process to move from one queue to another?

Part 5: Threads

What are threads?

e A thread is an independent execution sequence within a single process.

e Threads share global parts of a virtual address space (text, data, heap) but
have their own stack + registers.

e Threads are multiplexed onto processors

e Threads are often called lightweight processes.

C++ Thread Syntax

#include <iostream>
#include <thread>

using namespace std; Thread constructor accepts a function and args.
Processor schedules the thread to run the new

int main() function (i.e. adds thread to ready queue).

{
thread t([] (a, b){
cout << a + b << endl;
}, 3, 3);

t.join() ;
return O; *
}

Parent thread waits for thread to finish executing.

Race Conditions with Threads

static float balance = 100.0;

void withdraw (float money) ({
if (money <= balance)
balance -= money;

}

int main ()

{
thread t2 (withdraw, 100) ;
thread t2 (withdraw, 100) ;
tl.join() ;
t2.join() ;
return 0;

Can the balance ever be negative?

What are mutexes?

e A mutex allows you to control access to a critical section of code.
e It's like a key: if you have it, you can enter, otherwise you must wait till
someone else gives you the key.

e When a thread encounters a mutex:
o Ifit's unlocked, lock the mutex and continue.
o Ifit’s locked, block until it's unlocked.

Race Conditions Fixed with Mutex

static float balance = 100.0;

void withdraw (float money) ({
if (money <= balance)
balance -= money;

}

int main ()

{
thread tl (withdraw, 100);
thread t2 (withdraw, 100) ;
tl.join() ;
t2.join() ;
return 0;

Where should we put mutexes?

Race Conditions Fixed with Mutex

static float balance = 100.0;
static mutex lock;

void withdraw(float money) {

if (money <= balance)
balance -= money;

}

int main()

{
thread tl (withdraw, 100) ;
thread t2 (withdraw, 100);
tl.join() ;
t2.join() ;
return O;

