
CS110 Course Information
Instructors​: Chris Gregg and Nick Troccoli
Email​: ​cgregg@stanford.edu​ / ​troccoli@stanford.edu
Offices​: Gates 201 (Chris), Gates 193 (Nick)
Phone: 857-234-0211 (Chris)
Office​ ​hours (Chris)​: Tue. 9:00 - 11:00am, or by appointment, in Gates 201
Office hours (Nick): ​Mon. 3-5PM and Thurs. 1-3PM, in Gates 193

Lectures​: Mondays and Wednesdays from 1:30pm – 2:50pm, NVIDIA Auditorium. ​During the
first week only​, we will hold class on Friday from 1:30pm-2:50pm.

Units: ​5 units. Only matriculated graduate students may register for fewer than five. The
requirements are the same for all students, including those who take the course for 3 or 4 units.

Course Assistants:​ Feross Aboukhadijeh (feross), Andrew Benson (adbenson), Caroline
Braviak (cbraviak), Aleksander Dash (adash), Kristine Guo (kguo98), Shrey Gupta (shreyg19),
Robbie Jones (rmjones), Wil Kautz (wkautz), Eric Matsumoto (ematsu), Clara McCreery
(mccreery)

CS110 CAs attend lectures, lead discussion sections, hold office hours, evaluate homework
submissions, monitor the online forums, and grade exams. Be glad they’re here, because all of
them have either completed the CS110 material before, CA’ed CS110 before, or both. They
know the material so well they already know what your questions are going to be.

Prerequisites​: Formally, the prerequisite for the course is CS107. Informally, you need to be
familiar with the C and C++ programming languages, Unix/Linux, ​make​, ​Makefile​s, ​gcc​/​g++​,
valgrind​, ​gdb​, and have some experience with basic computer architecture (x86 as it’s taught
in CS107, or exposure to some other architecture with the confidence and ability to pick up x86
as we reference it).

We'll be coding in a mixture of C and C++ throughout the quarter. We rely on C, because the
libraries needed to interface with system resources are written in C. We rely on C++, because
the projects become large enough that it’s useful to use a language that supports encapsulation
and generic programming better than C does. You should understand pointers, dynamic
memory allocation (​malloc​/​realloc​/​free​), and C strings well enough that you're not intimidated
by them. You should understand C++ classes, methods, references, templates, and C++’s ​new
and ​delete​ operators. There are C++ features you're not expected to know, but you should have
enough programming maturity to pick those features up and search the web for reference
materials as needed.

mailto:cgregg@stanford.edu
mailto:troccoli@stanford.edu

The first assignment, which goes out this week, is a systems programming assignment that
should bring all relevant CS107 and software development skills back into rotation. If you
haven't taken CS107 and/or programmed in C and C++ before, but you're able to work through
this first assignment without drama, then you're more than qualified to take CS110.

Readings:

● The first required textbook is ​Computer Systems: A Programmer's Perspective​ by Bryant
and O'Hallaron, either the 2nd or 3rd edition. Both CS107 and CS110 teach from a
subset of the B&O textbook, so a custom reader—with just the chapters we need—is
available at the Stanford Bookstore. Of course, if you want to purchase the entire
textbook, you’re free to do that as well, though you’ll need to buy from​ ​Amazon​ or some
other online retailer.

● The second required textbook is ​Principles of Computer System Design: An Introduction
by Jerome H. Saltzer and M. Frans Kaashoek. Stanford has​ ​university-wide digital
access to the textbook​, so you are welcome to access it online.Again, you’re welcome to
purchase a hard copy if you’d like. It’s available for purchase on​ ​Amazon​. (If you're living
off campus, then you should read​ ​this​ so you can view the textbook when not on
campus.)

Website​:​ ​http://cs110.stanford.edu​ ​is your new favorite website. There you’ll find all reading
assignments, lecture slides, homework assignment specifications, and the full list of office
hours. If you have any suggestions on how to make the course website even more useful, then
drop Chris or Nick an email and we'll talk.

Software​: The shared UNIX workstations (​myth​ machines in Gates B08, available via ​ssh​)
provide all of the development tools needed for lecture examples and assignments (although we
may occasionally reference the more powerful ​rice​, ​wheat​, and ​oat​ machines to clarify the
impact that more processors and larger caches have on execution).
It's true that we live in a laptop world, and we suspect you’d like to code on your own machines
and eventually port everything over to the ​myth​s (where you submit your work and we grade
your assignments). However, we strongly urge you to code, test, and debug directly on the
myth​s via ​ssh​. The ​myth​s are outfitted with a hip version of ​g++​ that supports the advanced
C++ features we’ll be relying on almost immediately, and it's better to incrementally develop
there instead of porting everything over ten minutes before a deadline.

Student Forums​: We're using​ ​Piazza​ for the class forum. If you have a question that might be
of interest to other students, please post there for a speedy response. Note, however, that you
should ​never include snippets of code directly from your own homework submissions​,
since that’s code sharing and a huge no-no.

http://www.amazon.com/Computer-Systems-Programmers-Perspective-Edition/dp/013409266X
http://www.amazon.com/Computer-Systems-Programmers-Perspective-Edition/dp/013409266X
http://www.sciencedirect.com/science/book/9780123749574
http://www.sciencedirect.com/science/book/9780123749574
http://www.sciencedirect.com/science/book/9780123749574
http://www.amazon.com/Principles-Computer-System-Design-Introduction/dp/0123749573
http://www.amazon.com/Principles-Computer-System-Design-Introduction/dp/0123749573
http://library.stanford.edu/using/connect-campus
http://library.stanford.edu/using/connect-campus
http://cs110.stanford.edu/
http://cs110.stanford.edu/
https://piazza.com/stanford/winter2020/cs110
https://piazza.com/stanford/winter2020/cs110

Grading​: You can take the course for a letter grade, or ​CR/NC. ​The course grading is divided
between several programming assignments, discussion section participation, a midterm during
Week 6, and a final exam. The grade breakdown is:

● Programming Assignments: 60%
● Discussion Section Participation: 5% (adjusted as per discussion section attendance

policy outlined below)
● Midterm Exam: 15%
● Final Exam: 20% (adjusted as per discussion section attendance policy outlined below)

If you're taking the course ​CR/NC​, your final grade is computed precisely the same way as it is
for those taking a letter grade, and you need a C- or better to get the ​CR​.

Discussion Sections​: This quarter, we'll lecture on Mondays and Wednesdays, leaving Fridays
open for CS110 discussion sections (except for the first Friday). Each and every one of you
needs to sign up for a discussion section and attend all of them to receive all section
participation points for the quarter. Each 80-minute section will have between 15 and 20
students, and most of them will be offered at various locations on Fridays at 1:30pm. You'll be
expected to bring your laptop or pair up with someone who has one, as the section will be a
combination of written problems, coding exercises, and software engineering tips to ensure that
you understand the material and how to successfully complete the assignments with minimal
drama. ​Note that we'll be lecturing the Friday of Week 1.​ But otherwise, Friday is CS110
Discussion Section Day. To accommodate those who hold conflicts during what would have
been our normal lecture time on Fridays, we'll offer a small number of discussion sections on
Thursdays at various times.

By the way, your discussion section grade is 100%. If you attend all discussion sections, then
that perfect discussion section grade counts for 5% of your final grade. For each discussion
section you miss, we reduce the section participation contribution to your final grade by 1%, and
transfer that 1% to your final exam. So, if you miss two discussion sections for any reason
whatsoever, then your final exam counts for 22% of your grade, and your section participation
grade (itself still a 100) only counts for 3% of your final grade. If you miss five or more
discussion sections for any reason, then your final exam counts for 25% of your final grade, and
your section participation grade doesn't count at all. This policy is an experiment that grants
some flexibility to those who feel they can learn the material just fine without discussion
sections.

Midterm Exam​: The two-hour midterm date is ​Friday, February 14th, in class​. The midterm is
closed book, closed notes, and closed computer​, save for the fact that we'll allow you to
prepare and refer to a single 8.5"-by-11" double-sided cheat sheet containing any information
you’d like. We'll include all relevant prototypes and type definitions (C functions, C++ classes,

etc.) on the exam, and you’re welcome to ask a staff member for a function or method prototype
if we failed to include it.

Final Exam​: The three-hour final exam is scheduled for ​Wednesday, March 18th from 3:30pm
- 6:30pm​. If you're taking a second class whose final exam competes with ours, we may offer
an alternate exam time on the same day, but it will not be possible to take the exam on a
different day. To be clear, you're expected to take the final at 3:30pm unless you have a conflict
with another class's final exam, in which case you should email either Chris or Nick to see about
taking it at a different time on the same day (please do this as soon as possible).

Late Policy​: We understand everyone here is busy. But falling behind on assignments just
leads to more problems, and it interferes with our ability to review them and turn around grades
in a timely manner.

All programming assignments are due at the stroke of midnight. If you need to submit an
assignment after the deadline, you still can. But doing so places a cap on the maximum number
of points you can get, depending on how late you submit.

● If you submit an assignment before the deadline, then you can potentially get 100% of
the points. Seems right.

● If you submit an assignment after the deadline, but within 24 hours, you can get at most
90% of the points. This doesn't mean we impose a 10% penalty regardless of your final
score. It means that all scores between 91% and 100% are demoted to 90%, but all
other scores are left alone. If your assignment is severely broken at the time you would
normally need to submit, then you have a good reason to take an additional 24 hours to
increase your score, as it can only go up. If your program is pretty much working with no
obvious flaws, then you probably should submit it by the published deadline.

● If you submit an assignment between 24 hours and 48 hours after the deadline, you can
get at most 60% of the points.

● You can never submit an assignment more than 48 hours after the deadline.
● The first assignment must be turned in by the published deadline, without

exception.​ We want to grade your first assignment as quickly as possible so you can get
feedback well before your second assignment falls due.

Note that requests for extensions will be denied unless something truly extenuating—a family
emergency, severe illness—presents itself, in which case you can send Chris or Nick an email
and we will what we can to make your life easier while being fair to everyone else.

Assignment Grading: ​Each assignment has the same weight towards your final grade.
Assignments are graded on both functionality ​and​ style, with functionality worth ⅚ and style
worth ⅙ of the grade. You will see a numerical functionality score when you look at your

assignment grades, which are available via the course website (​direct link​). The style portion of
your grade will show as a set of English descriptions (​0, multiple-major-issues, major-issue,
minor-issues, great​) for important aspects of each assignment. For example, on your second
assignment, one of the style blocks might be (don’t worry if the details don’t make sense yet):

lift properly sized payload out of identified block ​(clean references to inode functions,
simple math for identifying how many bytes of final block should count)

Here are descriptions for each bucket:

● great ​- An outstanding job; reflects code that is notably clean, elegant and readable, with
no issues present.

● minor-issues ​- A good job; reflects code that demonstrates solid effort and is fairly
successful at meeting expectations, but also has opportunities for improvement.

● major-issue​ -​ ​Has more problems, but shows some effort and understanding. There
was either a large concern, or several smaller concerns, in the submission.

● multiple-major-issues​ - Has significant issues, either several large issues or a
multitude of smaller ones, that together constitute very poor style work.

● 0​ - No work submitted, or barely any changes from the starter assignment.

We purposely make the grading for style a bit fuzzy (i.e., we don’t give a numerical grade), as it
is not something that we want students to get too concerned about. If you do have a question
about either the functionality grade or the style grade, please reach out to your grader, to Chris
or Nick, or stop by office hours and we can take a look.

Students with Documented Disabilities​: ​Students who may need an academic
accommodation based on the impact of a disability must initiate the request with the
Office of Accessible Education (OAE). Professional staff will evaluate the request,
review appropriate medical documentation, recommend reasonable accommodations,
and prepare an Accommodation Letter for faculty. The letter will indicate how long it is
to be in effect. Students should contact the OAE as soon as possible since timely notice
is needed to coordinate accommodations. Students should also send your
accommodation letter to instructors as soon as possible. The OAE is located at 563
Salvatierra Walk (phone: 723-1066, URL: ​http://oae.stanford.edu​).

SCPD Video Recordings: ​Video cameras located in the back of the room will capture the
instructor presentations in this course. For your convenience, you can access these recordings
by logging into the course Canvas site. These recordings might be reused in other Stanford
courses, viewed by other Stanford students, faculty, or staff, or used for other education and
research purposes. Note that while the cameras are positioned with the intention of recording
only the instructor, occasionally a part of your image or voice might be incidentally captured. If
you have questions, please contact a member of the teaching team.

https://web.stanford.edu/class/cs110/cgi-bin/gradebook
https://oae.stanford.edu/

Honor Code:​ Although you are encouraged to discuss ideas with others, your programs are to
be completed independently and should represent fully original work. Whenever you obtain help
(from current or previous CS110 students, the CA's, students in other classes, etc.) you should
credit those who helped directly in your program, e.g. in a program comment, type "The idea to
use a ​mutex​-guarded linked list of file descriptors came from a discussion with my CS110 CA,
Sarah Radzihovsky."

Any assistance that is not given proper citation is considered plagiarism, and a violation
of the Stanford Honor Code​. To be even more specific, you are not allowed to collaborate on
the coding of your programs, nor are you allowed to copy even minute snippets of programs
from other students, past or present. The following activities are among the many we consider
to be Honor Code violations:

1. Looking at another student’s code.
2. Showing another student your code.
3. Discussing assignments in such detail that you duplicate a portion of someone else's

code in your own program.
4. Uploading your code to a public repository (e.g.​ ​github.com​) so that others can easily

discover it via word of mouth or search engines. If you’d like to upload your code to a
private repository, you can do so on​ ​github​ ​or some other hosting service that provides
free-of-charge private hosting.

Unfortunately, the CS department sees more than its fair share of Honor Code violations.
Because it’s important that all cases of academic dishonesty be identified for the sake of those
playing by the rules, we exercise our right to use software tools to compare your submissions
against those of all other current and past CS110 students, including any we might find online.
While we certainly don’t want to create some Big Brother environment, we do need to be clear
how far we’ll go to make sure the consistently honest feel their honesty is valued.

If the thought of copying code has never crossed your mind, then you needn’t worry, because
we’ve never seen a false accusation go beyond a single conversation. But if you’re ever
tempted to share code—whether it’s because you don’t understand the material, or because
you do but just don’t have enough time to get the work done—then you need to remember these
paragraphs are here.

Course Expenses
All students should retain receipts for books and other course-related expenses, as these may
be qualified educational expenses for tax purposes. If you are an undergraduate receiving
financial aid, you may be eligible for additional financial aid for required books and course
materials if these expenses exceed the aid amount in your award letter. For more information,
review your award letter or visit the Student Budget website
(​https://financialaid.stanford.edu/undergrad/budget/index.html​).

http://github.com/
http://github.com/
http://github.com/
http://github.com/
https://financialaid.stanford.edu/undergrad/budget/index.html

Final Notes​. We want you to succeed in the course, and we will do everything in our power to
help you do well. The course is ​rigorous​ and requires a significant time commitment. Plan on
starting the assignments early and working diligently on them. Come to office hours, and do the
readings. If you have any concerns about your progress, email Chris or Nick as soon as you
recognize that you are falling behind. This is even more important if you are a graduating senior
who needs CS110 to graduate -- Spring seniors have failed the course numerous times before
and we do not make exceptions for students simply because they are going to graduate.

This course has been carefully cultivated by Jerry Cain for many quarters, and the general
outline and almost all of the assignments, labs, and course material is credited to him.

