
CS110 Course Syllabus 
Overview of Linux Filesystems 

● Linux and C libraries for file manipulation: stat, struct stat, open, close, read, write, 
readdir, struct dirent, file descriptors, regular files, directories, soft and hard links, 
programmatic manipulation of them, implementation of ls, cp, cat, etc. 

● naming, abstraction and layering concepts in systems as a means for managing 
complexity, blocks, inodes, inode pointer structure, inode as abstraction over blocks, 
direct blocks, indirect blocks, doubly indirect blocks, design and implementation of a file 
system. 

● additional systems examples that rely on naming, abstraction, modularity, and layering, 
including DNS, TCP/IP, network packets, databases, HTTP, REST, descriptors and 
pids. 

● building modular systems with simultaneous goals of simplicity of implementation, fault 
tolerance, and flexibility of interactions. 

Multiprocessing and Exceptional Control Flow 

● introduction to multiprocessing, fork, waitpid, execvp, process ids, inter-process 
communication, context switches, user versus supervisor mode. 

● protected address spaces, virtual memory, main memory as cache, virtual to physical 
address mapping. 

● concurrency versus parallelism, multiple cores versus multiple processors, concurrency 
issues with multiprocessing. 

● interrupts, faults, systems calls, signals, design and implementation of a simple shell. 
● virtualization as a general systems principle, with a discussion of processes, RAID, load 

balancers, AFS servers and clients. 

Threading and Concurrency 

● sequential programming, VLIW concept, desire to emulate the real world with parallel 
threads, free-of-charge exploitation of multiple cores (two per myth machine, eight per 
rice machine, 24 per barley machine), pros and cons of threading versus forking. 

● C++ threads, thread construction using function pointers, blocks, functors, join, detach, 
race conditions, mutex, IA32 implementation of lock and unlock, spin-lock, busy 
waiting, preemptive versus cooperative multithreading, yield, sleep_for. 

● condition variables, rendezvous and thread communication, unique_lock, wait, 
notify_one, notify_all, deadlock. 

● semaphore concept and semaphore implementation, generalized counter, pros and 
cons of semaphore versus exposed condition variables, thread pools, cost of threads 
versus processes. 



● active threads, blocked threads, ready thread queue, high-level implementation details of 
the thread manager, mutex, and condition_variable_any. 

● pure C alternatives via pthreads, pros of pthreads over C++ thread package. 

Networking and Distributed Computing 

● client-server model, peer to peer model, protocols, request and response as a way to 
organize modules and their interactions to support a clear set of responsibilities. 

● stateless versus keep-alive connections, latency and throughput issues, 
gethostbyname, gethostbyaddr, IPv4 versus IPv6, struct sockaddr hierarchy of 
structs, network-byte order. 

● ports, socket file descriptors, socket, connect, bind, accept, read, write, simple echo 
server, time server, concurrency issues, spawning threads to isolate and manage single 
conversations. 

● C++ layer over raw I/O file descriptors, introduction to sockbuf and sockstream C++ 
classes. 

● HTTP 1.0 and 1.1, header fields, GET, HEAD, POST, complete versus chunked 
payloads, response codes, web caching and consistency protocols. 

● IMAP, custom protocols, Dropbox and iCloud reliance on variations of HTTP. 
● MapReduce programming model, implementation strategies using multiple threads 

and/or processes, comparison to previous systems that do the same thing, but not as 
well. 

● non-blocking I/O, where normally slow system calls like open, accept, read, and write 
return immediately instead of blocking, select, epoll_* set of functions, libev and libuv 
open source libraries. 

This handout was created by Jerry Cain, and Phil Levis contributed. 
 


