
CS110 Lecture 10: Threads and MutexesCS110 Lecture 10: Threads and Mutexes

Principles of Computer Systems

Winter 2020

Stanford University

Computer Science Department

Instructors: Chris Gregg and

 Nick Troccoli

PDF of this presentation
1

http://web.stanford.edu/class/cs110/static/lectures/10-threads-and-mutexes.pdf

CS110 Topic 3:CS110 Topic 3: How can we haveHow can we have
concurrency within a single process?concurrency within a single process?

2

Learning About ProcessesLearning About Processes

Introduction to
Threads

Mutexes and
Condition
Variables

Condition
Variables and
Semaphores

Multithreading
Patterns

2/32/3 TodayToday 2/102/10 2/122/12

3

Today's Learning GoalsToday's Learning Goals
Discover some of the pitfalls of threads sharing the same virtual address space

Learn how locks can help us limit access to shared resources

Get practice using condition variables to wait for signals from other threads

4

Plan For TodayPlan For Today
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

5

Plan For TodayPlan For Today
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

6

A thread is an independent execution sequence within a single process.

Most common: assign each thread to execute a single function in parallel

Each thread operates within the same process, so they share global data (!) (text, data, and heap

segments)

They each have their own stack (e.g. for calls within a single thread)

Execution alternates between threads as it does for processes

Many similarities between threads and processes; in fact, threads are often called lightweight

processes.

ThreadsThreads

7

Processes:

isolate virtual address spaces (good: security and stability, bad: harder to share info)

can run external programs easily (fork-exec) (good)

harder to coordinate multiple tasks within the same program (bad)

Threads:

share virtual address space (bad: security and stability, good: easier to share info)

can't run external programs easily (bad)

easier to coordinate multiple tasks within the same program (good)

Threads vs. ProcessesThreads vs. Processes

8

C++ C++ threadthread
A thread object can be spawned to run the specified function with the given arguments.

thread myThread(myFunc, arg1, arg2, ...);

myFunc: the function the thread should execute asynchronously
args: a list of arguments (any length, or none) to pass to the function upon execution
Once initialized with this constructor, the thread may execute at any time!

To pass objects by reference to a thread, use the ref() function:

void myFunc(int& x, int& y) {...}

thread myThread(myFunc, ref(arg1), ref(arg2));

9

C++ C++ threadthread

We can also initialize an array of threads as follows (note the loop by reference):

thread friends[5];
for (thread& currFriend : friends) {
 currFriend = thread(myFunc, arg1, arg2);
}

// declare array of empty thread handles
thread friends[5];

// Spawn threads
for (size_t i = 0; i < 5; i++) {
 friends[i] = thread(myFunc, arg1, arg2);
}

We can make an array of threads as follows:

10

C++ C++ threadthread

For multiple threads, we must wait on a specific thread one at a time:
thread friends[5];
// spawn here
// now we wait for each to finish
for (size_t i = 0; i < 5; i++) {
 friends[i].join();
}

To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);

... // do some work

// Wait for thread to finish (blocks)
myThread.join();

11

Thread SafetyThread Safety
A thread-safe function is one that will always execute correctly, even when called concurrently from multiple
threads.

printf is thread-safe, but operator<< is not. This means e.g. cout statements could get interleaved!
To avoid this, use oslock and osunlock (custom CS110 functions - #include "ostreamlock.h") around
streams. They ensure at most one thread has permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;1

12

Threads Share MemoryThreads Share Memory
static void greeting(size_t& i) {
 cout << oslock << "Hello, world! I am thread " << i << endl << osunlock;
}

static const size_t kNumFriends = 6;
int main(int argc, char *argv[]) {
 cout << "Let's hear from " << kNumFriends << " threads." << endl;

 thread friends[kNumFriends]; // declare array of empty thread handles

 // Spawn threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, ref(i));
 }

 // Wait for threads
 for (size_t i = 0; i < kNumFriends; i++) {
 friends[i].join();
 }

 cout << "Everyone's said hello!" << endl;
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

$./friends
Let's hear from 6 threads.
Hello, world! I am thread 2
Hello, world! I am thread 2
Hello, world! I am thread 3
Hello, world! I am thread 5
Hello, world! I am thread 5
Hello, world! I am thread 6
Everyone's said hello!

1
2
3
4
5
6
7
8
9

Output

13

for (size_t i = 0; i < kNumFriends; i++) {
 friends[i] = thread(greeting, ref(i));
}

1
2
3

_start greeting

main argc

argv
i

14

args args args args args args

created thread stacksmain stack

Solution: pass a copy of i (not by reference) so it does not change.

Threads Share MemoryThreads Share Memory

Plan For TodayPlan For Today
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

15

Threads allow a process to parallelize a problem across multiple cores

Consider a scenario where we want to process 250 images and have 10 cores

Simulation: let each thread help process images until none are left

Let's jump to a demo to see how this works

// images.cc
int main(int argc, const char *argv[]) {
 thread processors[10];
 size_t remainingImages = 250;
 for (size_t i = 0; i < 10; i++)
 processors[i] = thread(process, 101 + i, ref(remainingImages));
 for (thread& proc: processors) proc.join();
 cout << "Images done!" << endl;
 return 0;
}

Thread-Level ParallelismThread-Level Parallelism

16

There is a race condition here!

Problem: threads could interrupt each other in between lines 2 and 3.

Why is this? It's because remainingImages > 0 test and remainingImages-- aren't atomic

Atomicity: externally, the code has either executed or not; external observers do not see any

intermediate states mid-execution

If a thread evaluates remainingImages > 0 to be true and commits to processing an image,

another thread could come in and claim that same image before this thread processes it.

Thread-Level ParallelismThread-Level Parallelism

static void process(size_t id, size_t& remainingImages) {
 while (remainingImages > 0) {
 sleep_for(500); // simulate "processing image"
 remainingImages--;
 ...
 }
 ...
}

1
2
3
4
5
6
7
8

17

C++ statements aren't inherently atomic. Virtually all C++ statements—even ones as simple as
remainingImages--—compile to multiple assembly code instructions.
Assembly code instructions are atomic, but C++ statements are not.
g++ on the myths compiles remainingImages-- to five assembly code instructions, as with:

The first two lines drill through the remainingImages reference to load a copy of the remainingImages
held on main's stack. The third line decrements that copy, and the last two write the decremented copy
back to the remainingImages variable held on main's stack.
The ALU operates on registers, but registers are private to a core, so the variable needs to be loaded from
and stored to memory.

Each thread makes a local copy of the variable before operating on it
What if multiple threads all load the variable at the same time: they all think there's only 128 images
remaining and process 128 at the same time

0x0000000000401a9b <+36>: mov -0x20(%rbp),%rax
0x0000000000401a9f <+40>: mov (%rax),%eax
0x0000000000401aa1 <+42>: lea -0x1(%rax),%edx
0x0000000000401aa4 <+45>: mov -0x20(%rbp),%rax
0x0000000000401aa8 <+49>: mov %edx,(%rax)

Why Test and Decrement Is REALLY NOT Thread-SafeWhy Test and Decrement Is REALLY NOT Thread-Safe

18

Plan For TodayPlan For Today
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

19

MutexMutex

https://www.flickr.com/photos/ofsmallthings/8220574255

A mutex is a variable type that
represents something like a
"locked door".

You can lock the door:

- if it's unlocked, you go through the
door and lock it

- if it's locked, you wait for it to unlock
first

If you most recently locked the door,
you can unlock the door:

- door is now unlocked, another may
go in now

20

A mutex is a type used to enforce mutual exclusion, i.e., a critical section
Mutexes are often called locks

To be very precise, mutexes are one kind of lock, there are others (read/write locks, reentrant locks,
etc.), but we can just call them locks in this course, usually "lock" means "mutex"

When a thread locks a mutex

If the lock is unlocked the thread takes the lock and continues execution
If the lock is locked, the thread blocks and waits until the lock is unlocked
If multiple threads are waiting for a lock they all wait until lock is unlocked, one receives lock

When a thread unlocks a mutex

It continues normally; one waiting thread (if any) takes the lock and is scheduled to run

This is a subset of the C++ mutex abstraction: nicely simple! How can we use this in our buggy program?
class mutex {
public:
 mutex(); // constructs the mutex to be in an unlocked state
 void lock(); // acquires the lock on the mutex, blocking until it's unlocked
 void unlock(); // releases the lock and wakes up another threads trying to lock it
};

Mutex - Mutual ExclusionMutex - Mutual Exclusion

21

main instantiates a mutex, which it passes (by reference!) to invocations of process.
The process code uses this lock to protect remainingImages.
Note we need to unlock on line 5 -- in complex code forgetting this is an easy bug

static void process(size_t id, size_t& remainingImages, mutex& counterLock) {
 while (true) {
 counterLock.lock();
 if (remainingImages == 0) {
 counterLock.unlock();
 break;
 }
 processImage(remainingImages);
 remainingImages--;
 cout << oslock << "Thread#" << id << " processed an image (" << remainingImages
 << " remain)." << endl << osunlock;
 counterLock.unlock();
 }
 cout << oslock << "Thread#" << id << " sees no remaining images and exits."
 << endl << osunlock;
}

// Create single mutex in main, pass by reference

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Critical Sections With MutexesCritical Sections With Mutexes

22

The way we've set it up, only one thread agent can process an image at a time!
We can do better: serialize deciding which image to process and parallelize the actual processing
Keep your critical sections as small as possible!

static void process(size_t id, size_t& remainingImages, mutex& counterLock) {
 while (true) {
 size_t myImage;

 counterLock.lock(); // Start of critical section
 if (remainingImages == 0) {
 counterLock.unlock(); // Rather keep it here, easier to check
 break;
 } else {
 myImage = remainingImages;
 remainingImages--;
 counterLock.unlock(); // end of critical section

 processImage(myImage);
 cout << oslock << "Thread#" << id << " processed an image (" << remainingImages
 << " remain)." << endl << osunlock;
 }
 }
 cout << oslock << "Thread#" << id << " sees no remaining images and exits."
 << endl << osunlock;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Critical Sections Can Be BottlenecksCritical Sections Can Be Bottlenecks

23

What if processImage can return an error?

E.g., what if we need to distinguish allocating an image and processing it
A thread can grab the image by decrementing remainingImages but if it fails there's no way for another
thread to retry
Because these are threads, if one thread has a SEGV the whole process will fail
A more complex approach might be to maintain an actual queue of images and allow threads (in a
critical section) to push things back into the queue

What if image processing times are *highly* variable (e.g, one image takes 100x as long as the others)?

Might scan images to estimate execution time and try more intelligent scheduling

What if there's a bug in your code, such that sometimes processImage randomly enters an infinite loop?

Need a way to reissue an image to an idle thread
An infinite loop of course shouldn't occur, but when we get to networks sometimes execution time can
vary by 100x for reasons outside our control

Problems That Might AriseProblems That Might Arise

24

Standard mutex: what we've seen

If a thread holding the lock tries to re-lock it, deadlock

recursive_mutex

A thread can lock the mutex multiple times, and needs to unlock it the same number of times to release
it to other threads

timed_mutex

A thread can try_lock_for / try_lock_until: if time elapses, don't take lock
Deadlocks if same thread tries to lock multiple times, like standard mutex

In this class, we'll focus on just regular mutex

Some Types of MutexesSome Types of Mutexes

25

Something we've seen a few times is that you can't read and write a variable atomically

But a mutex does so! If the lock is unlocked, lock it

How does this work with caches?

Each core has its own cache
Writes are typically write-back (write to higher cache level when line is evicted), not write-through
(always write to main memory) for performance
Caches are coherent -- if one core writes to a cache line that is also in another core's cache, the other
core's cache line is invalidated: this can become a performance problem

Hardware provides atomic memory operations, such as compare and swap

cas old, new, addr

If addr == old, set addr to new

Use this as a single bit to see if the lock is held and if not, take it
If the lock is held already, then enqueue yourself (in a thread safe way) and tell kernel to sleep you
When a node unlocks, it clears the bit and wakes up a thread

How Do Mutexes Work?How Do Mutexes Work?

26

Plan For TodayPlan For Today
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

27

AnnouncementsAnnouncements
Midterm Next Friday

Midterm info webpage with practice materials, BlueBook download:

cs110.stanford.edu/exams/midterm/

Please notify us of any OAE accommodations by this Monday

We use BlueBook, computerized testing software you will run on your laptop. If you

don't have a laptop to use, let us know by this Monday.

Covers through this week + assign4

Limited power outlets for laptops

You are allowed one back/front page of 8.5 x 11in paper for any notes you would like

to bring in. We will also provide references in the exam itself as needed.

28

Plan For TodayPlan For Today
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

29

The Problem

This is a canonical multithreading example used to illustrate the potential for
deadlock and how to avoid it.

Five philosophers sit around a table, each in front of a big plate of spaghetti.
A single fork (the utensil, not the system call) is placed between neighboring
philosophers.

Each philosopher comes to the table to think, eat, think, eat, think, and eat.
That's three square meals of spaghetti after three extended think sessions.
Each philosopher keeps to themselves as they think. Sometime they think
for a long time, and sometimes they barely think at all.
After each philosopher has thought for a while, they proceed to eat one of
their three daily meals. In order to eat, they must grab hold of two forks—
one on their left, then one on their right. With two forks in hand, they chow
on spaghetti to nourish their big, philosophizing brain. When they're full,
they put down the forks in the same order they picked them up and returns
to thinking for a while.

The next two slides present the core of our first stab at the program that codes to
this problem description. (The full program is .)

Dining Philosophers

right here

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

30

https://en.wikipedia.org/wiki/Dining_philosophers_problem
http://web.stanford.edu/class/cs110/examples/threads-cpp/dining-philosophers-with-deadlock.cc

The Problem

The program models each of the forks as a mutex, and each philosopher either
holds a fork or doesn't. By modeling the fork as a mutex, we can rely on
mutex::lock to model a thread-safe fork grab and mutex::unlock to model a
thread-safe fork release.

Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex& right) {
 for (size_t i = 0; i < 3; i++) {
 think(id);
 eat(id, left, right);
 }
}

int main(int argc, const char *argv[]) {
 mutex forks[5];
 thread philosophers[5];
 for (size_t i = 0; i < 5; i++) {
 mutex& left = forks[i], & right = forks[(i + 1) % 5];
 philosophers[i] = thread(philosopher, i, ref(left), ref(right));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

31

https://en.wikipedia.org/wiki/Dining_philosophers_problem

The Problem

The implementation of think is straightforward. It's designed to emulate the time a
philosopher spends thinking without interacting with forks or other philosophers.
The implementation of eat is almost as straightforward, provided you understand
the thread subroutine is being fed references to the two forks he needs to eat.

Dining Philosophers

static void think(size_t id) {
 cout << oslock << id << " starts thinking." << endl << osunlock;
 sleep_for(getThinkTime());
 cout << oslock << id << " all done thinking. " << endl << osunlock;
}

static void eat(size_t id, mutex& left, mutex& right) {
 left.lock();
 right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 left.unlock();
 right.unlock();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

32

https://en.wikipedia.org/wiki/Dining_philosophers_problem

The program appears to work well (we'll run it several times), but it doesn't guard
against this: each philosopher emerges from deep thought, successfully grabs the fork
to their left, and is then forced off the processor because their time slice is up.
If all five philosopher threads are subjected to the same scheduling pattern, each
would be stuck waiting for a second fork to become available. That's a real deadlock
threat.
Deadlock is more or less guaranteed if we insert a sleep_for call in between the two
calls to lock, as we have in the version of eat presented below.

We should be able to insert a sleep_for call anywhere in a thread routine. If it
surfaces a concurrency issue, then you have a larger problem to be solved.

static void eat(size_t id, mutex& left, mutex& right) {
 left.lock();
 sleep_for(5000); // artificially force off the processor
 right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 left.unlock();
 right.unlock();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

33

When coding with threads, you need to ensure that:

there are no race conditions, even if they rarely cause problems, and
there's zero threat of deadlock, lest a subset of threads are forever starving for
processor time.

mutexes are generally the solution to race conditions. We can use them to mark the
boundaries of critical regions and limit the number of threads present within them to
be at most one.
Deadlock can be programmatically prevented by implanting directives to limit the
number of threads competing for a shared resource, like forks.

We could, for instance, recognize it's impossible for three philosophers to be
eating at the same time. That means we could limit the number of philosophers
who have permission to grab forks to a mere 2.
We could also argue it's okay to let four—though certainly not all five—
philosophers grab forks, knowing that at least one will successfully grab both.

My personal preference? Impose a limit of four.
My rationale? Implant the minimal amount of bottlenecking needed to remove
the threat of deadlock, and trust the thread manager to otherwise make good
choices.

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

34

Here's the core of a program that limits the number of philosophers grabbing forks to
four. (The full program can be found .)

I impose this limit by introducing the notion of a permission slip, or permit. Before
grabbing forks, a philosopher must first acquire one of four permission slips.
These permission slips need to be acquired and released without race condition.
For now, I'll model a permit using a counter—I call it permits—and a companion
mutex—I call it permitsLock—that must be acquired before examining or changing
permits.

right here

int main(int argc, const char *argv[]) {
 size_t permits = 4;
 mutex forks[5], permitsLock;
 thread philosophers[5];
 for (size_t i = 0; i < 5; i++) {
 mutex& left = forks[i],
 & right = forks[(i + 1) % 5];
 philosophers[i] =
 thread(philosopher, i, ref(left), ref(right), ref(permits), ref(permitsLock));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

35

http://web.stanford.edu/class/cs110/examples/threads-cpp/dining-philosophers-with-busy-waiting.cc

The implementation of think is the same, so I don't present it again.
The implementation of eat, however, changes.

It accepts two additional references: one to the number of available permits, and a
second to the mutex used to guard against simultaneous access to permits.

static void eat(size_t id, mutex& left, mutex& right, size_t& permits, mutex& permitsLock) {
 waitForPermission(permits, permitsLock); // on next slide
 left.lock(); right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 grantPermission(permits, permitsLock); // on next slide
 left.unlock(); right.unlock();
}

static void philosopher(size_t id, mutex& left, mutex& right,
 size_t& permits, mutex& permitsLock) {
 for (size_t i = 0; i < kNumMeals; i++) {
 think(id);
 eat(id, left, right, permits, permitsLock);
 }
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

36

The implementation of eat on the prior slide deck introduces calls to
waitForPermission and grantPermission.

The implementation of grantPermission is certainly the easier of the two to
understand: transactionally increment the number of permits by one.
The implementation of waitForPermission is less obvious. Because we don't know
what else to do (yet!), we busy wait with short naps until the number of permits is
positive. Once that happens, we consume a permit and then return.

static void waitForPermission(size_t& permits, mutex& permitsLock) {
 while (true) {
 permitsLock.lock();
 if (permits > 0) break;
 permitsLock.unlock();
 sleep_for(10);
 }
 permits--;
 permitsLock.unlock();
}

static void grantPermission(size_t& permits, mutex& permitsLock) {
 permitsLock.lock();
 permits++;
 permitsLock.unlock();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

37

The second version of the program works, in the sense that it never deadlocks.

It does, however, suffer from busy waiting, which the systems programmer gospel
says is verboten unless there are no other options.

A better solution? If a philosopher doesn't have permission to advance, then that
thread should sleep until another thread sees reason to wake it up. In this example,
another philosopher thread, after it increments permits within grantPermission,
could notify the sleeping thread that a permit just became available.
Implementing this idea requires a more sophisticated concurrency directive that
supports a different form of thread communication—one akin to the use of signals and
sigsuspend to support communication between processes. Fortunately, C++ provides
a standard directive called the condition_variable_any to do exactly this.

class condition_variable_any {
public:
 void wait(mutex& m);
 template <typename Pred> void wait(mutex& m, Pred pred);
 void notify_one();
 void notify_all();
};

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

38

Here's the main thread routine that introduces a condition_variable_any to support
the notification model we'll use in place of busy waiting. (Full program:)

The philosopher thread routine and the eat thread subroutine accept references
to permits, cv, and m, because references to all three need to be passed on to
waitForPermission and grantPermission.
I go with the shorter name m instead of permitsLock for reasons I'll get to soon.

here

int main(int argc, const char *argv[]) {
 size_t permits = 4;
 mutex forks[5], m;
 condition_variable_any cv;
 thread philosophers[5];
 for (size_t i = 0; i < 5; i++) {
 mutex& left = forks[i], & right = forks[(i + 1) % 5];
 philosophers[i] =
 thread(philosopher, i, ref(left), ref(right), ref(permits), ref(cv), ref(m));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

39

http://web.stanford.edu/class/cs110/examples/threads-cpp/dining-philosophers-with-cv-wait-one.cc

The new implementations of waitForPermission and grantPermission are below:

The lock_guard is a convenience class whose constructor calls lock on the supplied
mutex and whose destructor calls unlock on the same mutex. It's a convenience
class used to ensure the lock on a mutex is released no matter how the function
exits (early return, standard return at end, exception thrown, etc.)
grantPermission is a straightforward thread-safe increment, save for the fact that
if permits just went from 0 to 1, it's possible other threads are waiting for a permit
to become available. That's why the conditional call to cv.notify_all() is there.

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
 lock_guard<mutex> lg(m);
 while (permits == 0) cv.wait(m);
 permits--;
}

static void grantPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
 lock_guard<mutex> lg(m);
 permits++;
 if (permits == 1) cv.notify_all();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

40

The new implementations of waitForPermission and grantPermission are below:

The implementation of waitForPermission will eventually grant a permit to the
calling thread, though it may need to wait a while for one to become available.

If there aren't any permits, the thread is forced to sleep via cv.wait(m). The
thread manager releases the lock on m just as it's putting the thread to sleep.
When cv is notified within grantPermission, the thread manager wakes the
sleeping thread, but mandates it reacquire the lock on m (very much needed to
properly reevaluate permits == 0) before returning from cv.wait(m).
Yes, waitForPermission requires a while loop instead an if test. Why? It's
possible the permit that just became available is immediately consumed by the
thread that just returned it. Unlikely, but technically possible.

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
 lock_guard<mutex> lg(m);
 while (permits == 0) cv.wait(m);
 permits--;
}

static void grantPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
 lock_guard<mutex> lg(m);
 permits++;
 if (permits == 1) cv.notify_all();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

41

The Problem, continued

while loops around cv.wait(m) calls are so common that the
condition_variable_any class exports a second, two-argument version of wait
whose implementation is a while loop around the first. That second version looks
like this:

It's a template method, because the second argument supplied via pred can be
anything capable of standing in for a zero-argument, bool-returning function.
The first waitForPermissions can be rewritten to rely on this new version, as with:

Dining Philosophers

template <Predicate pred>
void condition_variable_any::wait(mutex& m, Pred pred) {
 while (!pred()) wait(m);
}

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
 lock_guard<mutex> lg(m);
 cv.wait(m, [&permits] { return permits > 0; });
 permits--;
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

42

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Fundamentally, the size_t, condition_variable_any, and mutex are collectively
working together to track a resource count—in this case, four permission slips.

They provide thread-safe increment in grantPermission and thread-safe
decrement in waitForPermission.
They work to ensure that a thread blocked on zero permission slips goes to sleep
indefinitely, and that it remains asleep until another thread returns one.

In our latest dining-philosopher example, we relied on these three variables to
collectively manage a thread-safe accounting of four permission slips. However!

There is little about the implementation that requires the original number be four.
Had we gone with 20 philosophers and and 19 permission slips,
waitForPermission and grantPermission would still work as is.
The idea of maintaining a thread-safe, generalized counter is so useful that most
programming languages include more generic support for it. That support
normally comes under the name of a semaphore.
For reason that aren't entirely clear to me, standard C++ omits the semaphore
from its standard libraries. My guess as to why? It's easily built in terms of other
supported constructs, so it was deemed unnecessary to provide official support
for it.

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

43

The semaphore constructor is so short that it's inlined right in the declaration of the
semaphore class.
semaphore::wait is our generalization of waitForPermission.

void semaphore::wait() {
 lock_guard<mutex> lg(m);
 cv.wait(m, [this] { return value > 0; })
 value--;
}

Why does the capture clause include the this keyword?

Because the anonymous predicate function passed to cv.wait is just that—a
regular function. Since functions aren't normally entitled to examine the private
state of an object, the capture clause includes this to effectively convert the bool-
returning function into a bool-returning semaphore method.

semaphore::signal is our generalization of grantPermission.

void semaphore::signal() {
 lock_guard<mutex> lg(m);
 value++;
 if (value == 1) cv.notify_all();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

44

Here's our final version of the dining-philosophers.

It strips out the exposed size_t, mutex, and condition_variable_any and replaces
them with a single semaphore.
It updates the thread constructors to accept a single reference to that semaphore.

static void philosopher(size_t id, mutex& left, mutex& right, semaphore& permits) {
 for (size_t i = 0; i < 3; i++) {
 think(id);
 eat(id, left, right, permits);
 }
}

int main(int argc, const char *argv[]) {
 semaphore permits(4);
 mutex forks[5];
 thread philosophers[5];
 for (size_t i = 0; i < 5; i++) {
 mutex& left = forks[i], & right = forks[(i + 1) % 5];
 philosophers[i] = thread(philosopher, i, ref(left), ref(right), ref(permits));
 }
 for (thread& p: philosophers) p.join();
 return 0;
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

45

eat now relies on that semaphore to play the role previously played by
waitForPermission and grantPermission.

We could switch the order of the last two lines, so that right.unlock() precedes
left.unlock(). Is the switch a good idea? a bad one? or is it really just arbitrary?
One student suggested we use a mutex to bundle the calls to left.lock() and
right.lock() into a critical region. Is this a solution to the deadlock problem?
We could lift the permits.signal() call up to appear in between right.lock() and the
first cout statement. Is that valid? Why or why not?

static void eat(size_t id, mutex& left, mutex& right, semaphore& permits) {
 permits.wait();
 left.lock();
 right.lock();
 cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
 sleep_for(getEatTime());
 cout << oslock << id << " all done eating." << endl << osunlock;
 permits.signal();
 left.unlock();
 right.unlock();
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

46

New concurrency pattern!

semaphore::wait and semaphore::signal can be leveraged to support a different
form of communication: thread rendezvous.
Thread rendezvous is a generalization of thread::join. It allows one thread to stall
—via semaphore::wait—until another thread calls semaphore::signal, often
because the signaling thread just prepared some data that the waiting thread
needs before it can continue.

To illustrate when thread rendezvous is useful, we'll implement a simple program
without it, and see how thread rendezvous can be used to repair some of its problems.

The program has two meaningful threads of execution: one thread publishes
content to a shared buffer, and a second reads that content as it becomes
available.
The program is a nod to the communication in place between a web server and a
browser. The server publishes content over a dedicated communication channel,
and the browser consumes that content.
The program also reminds me of how two independent processes behave when
one writes to a pipe, a second reads from it, and how the write and read processes
behave when the pipe is full (in principle, a possibility) or empty.

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables

47

RecapRecap
Recap: Threads in C++

Races When Accessing Shared Data

Introducing Mutexes

Break: Announcements

Dining With Philosophers

Next time: more about concurrency directives

48

