

CS110 Practice Midterm 4 Solution

Solution 1: findexec

Implement the findexec function, which has the following prototype:

void findexec(char *root, char *pattern, char *command[]);

This findexec function runs two sister processes—the first running find and a second running
xargs—such that the standard output of the first leads to the standard input of the second. The
root and pattern parameters shape how the first process does its job, and command is a
NULL-terminated vector of arguments that shape how the second process does its job. Restated,
the root, pattern, and command parameters prompt findexec to do the same thing that the
following command would have achieved in stsh:

stsh> find root -name pattern -print | xargs command

Your implementation must do the following:

• construct the argument vector for the first process to include the supplied root and
pattern variables

• construct the argument vector for the second process where "xargs" has been
prepended to the series of tokens residing within command

• create two new sister processes such that the standout output of the first is wired to the
standard input of the second

• transform the first to execute find, and the second to execute xargs
• close all unused file descriptors
• wait for each of the two processes to finish before returning

You may assume all system calls work as intended and need not do any error checking at all.
You may not use pipeline or subprocess from lecture or the assignment set. In fact, I
basically want you to re-implement something akin to Assignment 3’s pipeline, but specific to
find and xargs. Note that we’re not asking you to implement find or xargs, as we’ve
already implemented our own versions of them in lecture and in discussion section.

Chris Gregg

Chris Gregg
3

 2

Solution 1: findexec [continued]

size_t countTokens(const char *command[]) {
 size_t count;
 for (count = 0; command[count] != NULL; count++) {}
 return count;
}

void findexec(char *root, char *pattern, char *command[]) {
 int fds[2];
 pipe(fds);
 pid_t pid1 = fork();
 if (pid1 == 0) {
 dup2(fds[1], STDOUT_FILENO);
 close(fds[0]);
 close(fds[1]);
 const char *find[] = {"find", dir, "-name", pattern, "-print", NULL};
 execvp(find[0], const_cast<char **>(find));
 }

 close(fds[1]);
 pid_t pid2 = fork();
 if (pid2 == 0) {
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 size_t count = countTokens(command);
 const char *xargs[count + 2];
 xargs[0] = "xargs";
 memcpy(xargs + 1, command, (count + 1) * sizeof(char *));
 execvp(xargs[0], const_cast<char **>(xargs));
 }

 close(fds[0]);
 waitpid(pid1, NULL, 0);
 waitpid(pid2, NULL, 0);
}

Solution 2: Short Answer Questions [14 points]

Unless otherwise noted, your answers to the following questions should be 75 words or fewer.
You needn’t write in complete sentences provided it’s clear what you’re saying. Full credit will
only be given to the best of responses. Just because everything you write is true doesn’t mean
you get all the points.

a. [2 points] remove is a C library function that removes a name from the file system. If the

supplied name was the last one to identify the file, then the file itself is truly deleted and its
resources donated back for reuse. In the context of your assign2 filesystem design, explain
how the file system would need to be updated to fully realize a call to remove.

Find relevant directory entry in parent directory’s payload, remove entry after
decrementing the corresponding inode’s reference count. If that reference count falls to
zero, deallocate all payload blocks and mark inode as free.

 3

b. [2 points] Recall that the struct inode from assign2 looked like this:

struct inode { // some fields irrelevant to the problem are omitted
 uint16_t i_mode; // bit vector of file type and permissions
 uint8_t i_size0; // most significant byte of size
 uint16_t i_size1; // lower two bytes of size
 uint16_t i_addr[8]; // device addresses constituting file
};

 One CS110 student once proposed the following idea: for files with sizes that are just slightly

larger than a perfect multiple of the block size (e.g. 1027, when the block size is 256), those
last few bytes (e.g. the last three bytes of a 1027-byte file) could be stored in the inode itself.
Describe how you would support this optimization so that entire blocks needn’t be allocated
just to store a few bytes of payload.

Store last few bytes in the unused i_addr entries. In the case of the 1027-byte file, those
three extra bytes could be dropped in the space set aside for i_addr[4] and the first
byte of i_addr[5]. It’s easy to discern from the overall file size how many extra bytes
there are and if they’ll fit in unused i_addr entries.

c. [2 points] Referring to your implementation of findexec in Problem 1, identify the one
close call that, if omitted, would prevent findexec from doing its job. Then explain why
that one close call is so crucial to everything working as expected.

The call to close(fds[1]) in the parent is needed, else the reference count of the
write end of the pipe will never fall to zero, and EOF will never be detected by the
process running xargs.

d. [2 points] Your implementations of farm and stsh each relied on signal handlers—farm

relied on a SIGCHLD handler to identify stopped processes, and stsh relied on a SIGCHLD
handler to identify processes that have stopped, exited, crashed, or exited normally. In fact,
farm could have been implemented just as easily without custom handlers, whereas stsh
really needed them. Explain why this is true.

The orchestrator in farm has nothing to do other than wait for workers to become
available, so the waitpid calls could be done inline without impacting correctness and
code clarity. Not true with stsh! Child processes may finish while the shell is blocking
on standard input, waiting for a foreground process to fall out of the foreground, and so
forth. Restated, stsh might be blocked on something unrelated to a process’s state
change.

e. [2 points] When establishing a new process group for a pipeline of two or more commands
(as with echo "abcdefgh" | ./conduit --count 4), your stsh implementation
needed to call setpgid in both the parent and in each of the children ("in order to avoid
some race conditions", as the handout stated it). Describe the race condition that could

 4

cause problems if the first child didn’t call setpgid and instead just relied on the parent to
call it before moving on to the create the second child.

First process might finish before parent calls setpgid, at which point the child’s pid is
no longer a valid pgid.

f. [2 points] Explain what the scheduler does when a program makes an otherwise valid call to
read at a time when no data is available. Further explain what the scheduler does so that
it’s informed when data does become available.

Scheduler pulls process off the CPU, constructs a process control block out of the CPU
state, and places that PCB in the blocked set. The scheduler also schedules an I/O
interrupt to be triggered when data become available so it can lift it out of the blocked set
into the ready queue.

g. [2 points] Many students asked if one signal handler can be interrupted by a signal of a

different type. Describe a simple coding experiment you could run to list all the signals
capable of interrupting a SIGCHLD handler.

Install a signal handler for SIGCHLD that for loops around calls to raise(sig), where
sig loops though all signal numbers. Then install a generic signal handler for all non-
SIGCHLD signals that runs cout << "I interrupted SIGCHLD: " << sig,
where sig is the generic handler’s one parameter.

