
Winter 2019 February 15th, 2019

CS110 Midterm Examination

This is a closed book, closed note, closed computer exam (although you can use your
single double-sided cheat sheet). You have 80 minutes to complete all problems. You
don’t need to #include any header files, and you needn’t guard against any errors unless
specifically instructed to do so. Understand that most points are awarded for concepts
taught in CS110. If you’re taking the exam remotely, you can call me at 415-205-2242
should you have any questions.

Good luck!

SUNet ID (username): __________________@stanford.edu

Last Name: __________________________________

First Name: __________________________________

I accept the letter and spirit of the honor code.

 [signed] __

 Score Grader

1. Game Simulation [10] ______ ______

2. Parallel grep [10] ______ ______

3. Short Answer Questions [10] ______ ______

Total [30] ______ ______

Chris Gregg

Chris Gregg
CS 110 Practice Midterm 4

Chris Gregg

Chris Gregg

Chris Gregg

 2

Relevant Prototypes
// filesystem access
int open(const char *path, int oflag, ...); // returns descriptor
ssize_t read(int fd, char buffer[], size_t len); // returns num read, 0 at eof
ssize_t write(int fd, char buffer[], size_t len); // returns num written
int close(int fd); // ignore retval
int pipe(int fds[]); // argument should be array of length 2, ignore retval
int pipe2(int fds[], int flags); // common flag: O_CLOEXEC
int dup2(int old, int new); // ignore retval
#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

// exceptional control flow and multiprocessing
pid_t fork();
pid_t waitpid(pid_t pid, int *status, int flags);
typedef void (*sighandler_t)(int sig);
sighandler_t signal(int signum, sighandler_t handler); // ignore retval
int sigsuspend(const sigset_t *mask); // ignore retval
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset); // ign. retval
int execvp(const char *path, char *argv[]); // ignore retval
int kill(pid_t pid, int sig); // ignore retval
int setpgid(pid_t pid, pid_t pgid); // ignore retval
#define WIFEXITED(status) // macro
#define WIFSTOPPED(status) // macro
#define WEXITSTATUS(status) // macro

 3

Problem 1: Game Simulation [10 points]

There are artificial intelligence simulators for many games, including tic-tac-toe, checkers, chess,
go, etc. Often, an AI improves by playing games against other simulators (or even against itself).
For this problem, you will write a program, game_sim, that runs two game-playing programs and
pits them against one another. Your simulator will pass STDOUT from the first program to STDIN of
the second program, and vice-versa until both programs terminate. In other words, the first
program will produce a move and print it to its STDOUT, and the second program will expect its
STDIN to be the first move. Then the second program will print out its move to STDOUT, and the
first program will expect it. This continues until the game terminates. The first game will be
responsible for making the first move and will also be responsible for printing the output of the
game to the terminal (to STDERR, which you can ignore). The way you will run the simulation
will be as follows:

./game_sim ./game_engine1 ./game_engine2

In your program, you will set up the appropriate pipes, and launch the first program (using
execvp) as player 1 with the following command line (for this example):

./game_engine1

The second program should be launched with the following command line:

./game_engine2 p2

where "p2" tells the program it will be player 2 and will expect the first input from player 1.

The output of the game play will be sent by player 1 to STDERR, and you do not need to worry
about this output. Please add your code under the “your code here” section.

 4

// file: game-sim.c
#include<stdio.h>
#include<unistd.h> // fork, getpid, getppid
#include <sys/wait.h> // waitpid
#include <fcntl.h> // O_CLOEXEC
#include <unistd.h> // pipe, pipe2

int main(int argc, char **argv)
{
 if (argc < 3) {
 printf("Usage:\n\t %s ./game_engine1 ./game_engine2\n",argv[0]);
 return 0;
 }
 char *game_engine1 = argv[1];
 char *game_engine2 = argv[2];

 // your code here:

 return 0;
}

 5

Problem 2: Parallel grep [10 points]

The standard UNIX grep program searches lines of STDIN for matching substrings, and prints out
matching lines, in order. For example, the following pipeline would search for the substring
"cs110" in the printf string, and it would print out three lines:

printf "I love CS110\nCS110 is my favorite\nI like CS107 more\nI have no comment
about CS110.\n" | grep CS110

Output:

I love CS110
CS110 is my favorite
I have no comment about CS 110.

The interesting part about grep is that it does not, by default, search across line boundaries,
meaning that each line search is independent of the others. We can therefore parallelize it using
multiprocessing.

Modify the partially written program on the next page that performs the search in parallel. You
need to write code at the end of the printStoppedProcesses function, and you also need to
write the childHandler function. Be sure to read through the entire starter code to understand
the program flow.

 6

const int kMaxProcesses = 80;
int childrenStopped = 0; // global

void printStoppedProcesses(vector<pid_t> &children) {
 // wait for all returning jobs, in order, and
 // continue each job to print out its line
 sigset_t suspendset, childset;
 sigemptyset(&suspendset);
 sigemptyset(&childset);

 sigaddset(&childset,SIGCHLD);
 // block SIGCHLD for while loop
 sigprocmask(SIG_BLOCK, &childset, NULL);

 while (children.size() > childrenStopped) {
 sigsuspend(&suspendset);
 }
 sigprocmask(SIG_UNBLOCK, &childset, NULL);
 // your code below

}

 7

void childHandler(int sig) {
 // update childrenStopped each time a child stops or exits

 // your code below

}

void findAndPrint(string line, string searchStr) {
 size_t result = line.find(searchStr);
 raise(SIGSTOP);
 // only print if there is a match
 if (result != string::npos) cout << line << endl;
}

int main(int argc, char **argv) {
 if (argc < 2) {
 cout << "usage:\n\t" << argv[0] << " searchstring" << endl;
 return 1;
 }
 string searchStr = argv[1];

 signal(SIGCHLD,childHandler);

 string line;
 vector<pid_t> children;
 while (getline(cin,line)) {
 if (children.size() >= kMaxProcesses) {
 printStoppedProcesses(children);
 children.clear();
 }
 pid_t pid = fork();
 if (pid == 0) { // child
 findAndPrint(line, searchStr);
 close(STDIN_FILENO); // child should not be reading data
 exit(0);
 }
 children.push_back(pid);
 }
 printStoppedProcesses(children);
 return 0;
}

 8

Problem 3: Short Answer Questions [10 points]

Unless otherwise noted, your answers to the following questions should be 75 words or fewer.
You needn’t write in complete sentences provided it’s clear what you’re saying. Full credit will
only be given to the best of responses. Just because everything you write is true doesn’t mean
you get all the points.

a. [2 points] The rename system call renames a file, moving it from one directory to another if

necessary. It comes with the following prototype:

 int rename(const char *ep, const char *np);

ep is short for existing path, and we’ll assume it’s an absolute path to a valid file you have
permission to rename. np (short for new path, and also absolute) identifies where the file
should be moved to and what new name it should assume. Any intermediate directories
needed for the move are created. So, a call to

rename("/WWW/index.html","/archive/winter-2019/index-w19.html");

would remove index.html from WWW and move it to archive/winter-2019, creating
archive and winter-2019 if necessary, with the name of index-w19.html. The
renaming works even if the file being moved is a directory or a symbolic link.

Without worrying about error checking, describe how rename could be efficiently
implemented in terms of your Assignment 2 file system.

 9

b. [2 points] Consider the following program, which creates and opens a file in read-write
mode, writes five characters to the file, and then attempts to read a single character through
the same descriptor:

int main(int argc, char *argv[]) {
 int f = open("foo.txt", O_RDWR | O_CREAT | O_EXCL, 0644);
 write(f, "abcde", 5);
 int ch;
 int count = read(f, &ch, 1);
 if (count == 0)
 printf("No data!\n");
 else
 printf("Got this: %c\n", ch);
 close(f);
 return 0;
}

When the above program runs, the output is No data!. Given the output, and leveraging
what you know about descriptor, open file, and vnode tables, explain why the output is what
it is.

 10

c. [2 points] Some students questioned the need to use pipe2 and O_CLOEXEC while
implementing subprocess, claiming it was fine to just call pipe and manually close all
pipe endpoints in the child process before the execvp call. That, as it turns out, is not true.

Consider the following test program:

int main(int argc, char *argv[]) {
 char *args[] = {const_cast<char *>("/usr/bin/sort"), NULL};
 subprocess_t sp1 = subprocess(args, true, false);
 subprocess_t sp2 = subprocess(args, true, false);
 dprintf(sp1.supplyfd, "hello\n");
 dprintf(sp1.supplyfd, "goodbye\n");
 dprintf(sp2.supplyfd, "bonjour\n");
 dprintf(sp2.supplyfd, "aurevoir\n");
 close(sp1.supplyfd);
 waitpid(sp1.pid, NULL, 0);

 close(sp2.supplyfd);
 waitpid(sp2.pid, NULL, 0);
 return 0;
}

When the above program is run with a subprocess implementation that uses pipe2 and
O_CLOEXEC, we see the expected output. When the above program is run using a
subprocess implementation that just uses pipe (and manually closes the pipe endpoints
in the child, before execvp), the process hangs.

Where does the program hang? And why?

 11

d. [2 points] When fork is called, the set of currently blocked signals is preserved, and the set
of installed signal handlers is preserved as well. When execvp is called, the set of currently
blocked signals is preserved, but all installed signal handlers are cleared and replaced by
default handlers.

• Defend the decision to preserve blocked signal sets across execvp boundaries.
• Explain why execvp restores all signal handlers to be the defaults.

 12

e. [2 points] Consider the following restartJob function from my own stsh solution, where
all error checking has been removed.

static void restartJob(const command& command, STSHJobState state) {
 size_t num = parseNumber(command.tokens[0]);
 STSHJob& job = joblist.getJob(num);
 forwardSignal(job, SIGCONT);
 job.setState(state);
 if (state == kForeground)
 waitForForegroundJob(job);
}

Because restartJob accesses and updates the global job list, one or more signals need to
be blocked while restartJob is executing. Since you’ve only installed handlers for
SIGINT, SIGTSTP, and SIGCHLD, those are the only three candidates. Which signal or
signals need to be blocked, and why?

 13

Scratch Paper

 14

Scratch Paper

