Lecture 04: Files, Memory, and Processes

Principles of Computer Systems
Winter 2021
Stanford University
Computer Science Department
Lecturer: Chris Gregg and

Nick Troccoli

PDF of this presentation

https://web.stanford.edu/class/cs110/static/lectures/cs110-lecture-04-filesystem-data-structures-and-system-calls.pdf

Recap of Lectures 1-3

e You've seen how a file system (e.g., the System 6 file system, sé6fs) layers

on top of a block device to present an abstraction of files and directories userspace processes

e [ayering: decomposing systems into components with well-defined |
responsibilities, specifying repcise APls between them (above and system cals
below)

operating system

m sé6fs works on top of anything that provides a block interface: hard —
disk, solid state disk, RAM disk, loopback disk, etc. I vnode intertace

= Many different file systems can sit on top of a block device: séfs,
ext2fs, ext4fs, btfs, ntfs, etc., etc.

e Abstraction: defining an API of an underlying resource that is I block interface

simultaneously simple to use, allows great flexibility in implementation,
and can perform well

file system (ext4fs, s6fs, btfs)

device driver (SATA, iSCSI)

= Userspace programs operate on files and directories hardware interface
= File system has great flexibility in how it represents files and
directories on a disk

= Not always perfect: block interface for flash and FTLs

e Names and name resolution: files are resources, directory entries (file
names) are the way we name and refer to those resources

hardware (PCI-E, DMA, RDMA, etc.)

Today's Lecture

How files on disk are presented to a program as file descriptors
How programs open, control and manipulate files

= How does the command below work?
"= $Scat people.txt | sort | uniq > list.txt

File descriptors vs. open files (many-to-one mapping)
vnode abstraction of a file within the kernel

Memory mapped files and the buffer cache

The concept of a process and what it represents

= Address space: virtualization of memory
m Seamless thread(s) of execution: virtualization of CPU

Creating and managing processes
Concurrency: challenges when you have multiple processes running
and how you manage them

userspace processes

system calls

operating system

i vnhode interface

file system (ext4fs, s6fs, btfs)

I block interface

device driver (SATA, iSCSI)

hardware interface

hardware (PCI-E, DMA, RDMA, etc.)

File Descriptor Table and File Descriptors

Process Control Blocks

deseriptor table for process 10 1000 descriptor table for process 1D 1001 . descriptor table for procesd 10 1002 .

e Linux maintains a data structure for each active process. These data structures are called process
control blocks, andthey arestoredinthe process table

= We'll explain exactly what a process is later in lecture

e Process control blocks store many things (the user who launched it, what time it was launched, CPU
state, etc.). Among the many items it storesisthe file descriptor table

e A file descriptor (used by your program) is a small integer that's an index into this table
m Descriptors 0, 1, and 2 are standard input, standard output, and standard error, but there are P

no predefined meanings for descriptors 3 and up. When you run a program from the terminal, {7/ 2=

descriptors O, 1, and 2 are most often bound to the terminal Y

Creating and Using File Descriptors

Process Control Blocks

descriptor table for pracess 1D 1000 descriptor table for process 1D 1001 descriptor table for process 1D 1002

e Afile descriptor is the identifier needed to interact with a resource (most often a file) via system
calls(e.g., read, write, and close)

e A name has semantic meaning, an address denotes a location; an identifier has no meaning
= /etc/passwd vs.34.196.104.129 vs. file descriptor 5
e Many system calls allocate file descriptors

= read: open afile
= pipe: create two unidirectional byte streams (one read, one write) between processes
m accept: accept a TCP connection request, returns descriptor to new socket

* When allocating a new file descriptor, kernel chooses the smallest available number

= These semantics are important! If you close stdout (1) then open a file, it will be assigned to
file descriptor 1 so act as stdout (thisishow $ cat in.txt > out.txt works)

File Descriptor vs. File Table Entries

Process Cantrol Blocks

descriptor table for process 1D 1000 descriptor table for process 1D 1001 descriptor table for process 1D 1002

L I | | | .

¢ 1 2 3 4 5 6 7 &8 9 ﬂ12/455T35 0 1 2 3 &4 S5 & 71 B 9

e Aentryinthe file descriptor tableis just a pointer

to a file table entry | c;TZi? :
e Multiple entries in a table can point to the same file | =25
table entry

e Entries in different file descriptor tables (different
processes!) can point to the same file table entry

e E.g., afiletable entry (for aregular file) keeps track of a current position in the file

= |f you read 1000 bytes, the next read will be from 1000 bytes after the preceding one
= |f you write 380 bytes, the next write will start 380 bytes after the preceding one

e |f you want multiple processes to write to the same log file and have the results be intelligible,
then you have all of them share a single file table entry: their calls to write will be serialized and
occur in some linear order

File Descriptors vs. File Table Entries Example

S
S

./main 1> log.txt 2> log.txt

./main 1> log.txt 2>&l

o~ B WDNRE

main (

argc,

* error
* msg

**argv)

"One plus one is\ntwo.\n";
"One plus two is\n";

write(2, error, strlen(error));
write(l, msg, strlen(msg));

0;

Opens log.txt twice (two file table entries)

Opens log.txt once, two descriptors for same
file table entry

File Descriptors vs. File Table Entries Example

fd table file table vhode fd table file table vhode

1 pos: 0 1 pos: 0
2 \ 2 \

log.txt log.txt

pos: 0

cgregg@myth60:$./testfd 1> log.txt 2> log.txt cgregg@myth60:$./testfd 1> log.txt 2>&l
cgregg@myth60:$ cat log.txt cgregg@myth60:$ cat log.txt

One plus two is One plus one is

two. two.

cgregg@myth60:$ One pl;s :zzoi:
cgregg@my s

File Table Details

Process Control Blocks

descriptor table for process 1D 1000 descriptor table for process 101001 descriptor table for process 1D 1002

-+ -+
NN NE S324NNNEEEE B =53ANEEEEE
o 1 \ 4 5 6 7 8 9 . 1 2 4 \ 5 7 & 9 ‘,,.‘_B.-"‘| 2 4 \'5 6 7 8 @9

kY
\
|

r | ==
mode r mode w mode w mode r mode w mode r mode rw mode r
cursor 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1
vnode D vinode [| vnode D vnode D vnode ‘_“ vnode [| vnode ‘:' vnode I:‘

Open file table

e Each process maintains its own descriptor table, but there is one, system-wide open file table.
This allows for file resources to be shared between processes, as we've seen

e Asdrawn above, descriptors O, 1, and 2 in each of the three PCBs alias the same three open files.
That's why each of the referred table entries have refcounts of 3 instead of 1.

e This shouldn't surprise you. If your bash shell calls make, which itself calls g++, each of them

inserts text into the same terminal window: those three files could be stdin, stdout, and stderr
for a terminal

Process Control Blocks
vhodes

descriptor table for process 1D 1000

‘ Y,
Y

| \ | g == / \ e

descriptor table for process 1D 1002

\\ - -|l \.
Wy {
”/'/}(“/ e ."'ll Ii"-.
g, /
_____ m— \«// _ ; \ _
mode r mode w mode w mode r mode w mode mode rw mode r
cursor 0O cursor 0 cursor 0 cursor 0 cursor 0 cursor 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refocount 1 refcount 1 refcount 1 refocount 1
vnode D vnode [| vnode D vnode m vnode | vnode [| vnode D vnode D
Open file table ‘\\
\“.\
y
type regfile
. . . refcount 1
e Each open file entry has a pointer to a vnode, which is a tnptrs [Ty T
. . . . inode 0644
structure housing static information about a file or file- e
. poohbear
like resource.

e The vnode is the kernel's abstraction of an actual file: it includes information on what kind of file it
is, how many file table entries reference it, and function pointers for performing operations.

e Avnode's interface is file-system independent, but its implementation is file-system specific; any
file system (or file abstraction) can put state it needs to in the vnode (e.g., inode number) o S0

e The term vnode comes from BSD UNIX; in Linux source it's called a generic inode (CONFUSING!) ¥\ .2

10

File Decriptors -> File Table -> vnode Table

Process Control Blocks

descriptor table for process 1D 1000

NNNEEREEEES

mode r mode w mode w mode r mode w mode r mode rw mode r
curscr 0 cursor 0 cursor 0 cursor 0 cursor 0 cursor 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refecount 1 refcount 1
vnode B\ vnode I:J\ vnode |7Z| vnode I:_' vnode vnode B\ vnode m vnode/g
_ o

Opat e A \/ \ \ \V
type directory type terminal type regfile type regfile type regfile
refcount 1 refcount 3 refcount 1

refcount 1 refcount 3
fnptrs fnptrs faptrs fnptrs

RIS % | x|
inode | p755 inode | ng44 inode | pg44 inode | g755
10:12am 8:23pm 10:12am 9:19pm
root pochbear root cgregq
Vnode table

e There is one system-wide vhode table for the same reason there is one system-wide open file

table. Independent file sessions reading from the same file don't need independent copies of the ¢\
vnode. They can all alias the same one.

UNIX File Abstractions Summary

e Userspace programs interact through files through file descriptors, small
integers which are indexes into a per-process file descriptor table
e Many file descriptors can point to the same file table entry system calls

userspace processes

= They share seek pointers (writes and reads are serialized)

= Multiple programs share stdout/stderr in a terminal operating system

e Many file table entries can point to the same file (vhode) I vnode interface

= They concurrently access the file with different seek pointers
= You run two instances of a python script in parallel: each invocation
of Python opens the file separately, with a different file table entry I block interface

file system (ext4fs, s6fs, btfs)

e Exactly how vnodes are implemented is filesystem/resource dependent
device driver (SATA, iSCSI)

= Aterminal (tty) vnode is different than an ext4fs one

e Reference counting throughout hardware interface

= Free afile table entry when the last file descriptor closes it hardware (PCI-E, DMA, RDMA, etc.)
= Free avnode when the last file table entry is freed
= Free afile whenits reference count is O and there is no vhode

e Key principles: abstraction, layers, naming

Memory mapped files

e read(2) is not the only way to for a program to access a file
e Read requires making a copy: program provides a buffer to read into

= What if many programs want read-only access to the file at the same time?
e Example: libc.so

= Almost program wants to read libc.so for some of the functions it provides
= |magine if every program had to read() all of its libraries into local memory
m |et's use pmap to look at how much memory libraries take up

e Solution: memory mapped files
= Ask the operating system: "please map this file into memory for me"

13

Process Address Spaces

Recall that each process operates as if it owns all of
main memory.

The diagram on the right presents a 64-bit
process's general memory playground that
stgftches from address O up through and including
2 -1

CS107 and CS107-like intro-to-architecture
courses present the diagram on the right, and
discuss how various portions of the address space
are cordoned off to manage traditional function call
and return, dynamically allocated memory, access
global data, and machine code storage and
execution.

No process actually uses all 264 bytes of its address
space. In fact, the vast majority of processes use a
miniscule fraction of what they otherwise think
they own.

The OS virtualizes memory: each process thinks it as
the complete system memory (but obviously it
doesn't)

OxFFFFFFFFFFFFFFFF

14

Memory Regions in a Process

Most of a process's memory isn't used: valid regions are
defined by segments, blocks of memory for a particular use

= Quick quiz: what's a SEGV (segmentation violation)?

Some segments you know quite well are the stack, heap, BSS,
data, rodata, and code (where your executable is)

» Quick quiz: differences between bss, data, and rodata?
There are also segments for shared libraries
= \We just pmapped a process on myth

Code is usually not read in through read: instead, it's memory
mapped

A memory mapped file acts like the whole file is read into a
segment of memory, but it a single copy can be shared across
many processes

0x00

user stack

heap

data

code

OxXFFFFFFFFFFFFFFFF

15

Memory Mapped Files

e void *mmap(void *addr,
size_tlen,
int prot,
int flags,
int fd,
off t offset);

e "The mmap() system call causes the pages starting at addr
and continuing for at most len bytes to be mapped from the
object described by fd, starting at byte offset offset. If offset
or lenis not a multiple of the pagesize, the mapped region
may extend past the specified range. Any extension beyond
the end of the mapped object will be zero-filled."

= A page (typically 4kB) is an operating system's unit of
memory management, defined by hardware
e You can also mmap() anonymous memory, memory that has
no backing file: pages in an anonymous region are zero (until
written)

= This is how the heap, stack, data, and bss are set up

libdl.so

libc.so

bash

OXFFFFFFFFFFFFFFFF

0x0

16

Memory Mapped Files and the Buffer Cache

The operating system maintains a buffer cache: a pool of (page-sized) pieces of files that are in memory

m Caching: keeping pieces of used data in faster storage to improve performance
m Buffer cache: keeping parts of files in use in memory so you don't have to hit disk

Callsto read () andwrite () operate on the buffer cache

Blocks are read from disk and put into the buffer cache as needed
Dirty pages in the buffer cache are written to disk when needed

= sync () system call flushes buffers associated with file

Two memory maps of the same file can point to the same buffer cache entry
There's a bit more to this, but you'll have to wait for CS140 (we could spend 4 lectures on just the basics)

libc.so

libc.so

Process A Buffer Cache Process B

Memory Mapped Files Summary

e A program can map a file into its memory with mmap ()

= Virtualization: every process thinks it has its own copy, but in reality there's a single one in memory (exception:
MAP_PRIVATE)

e Memory mapped files unify the idea of the process address space with its file descriptors
e Used parts of files are kept in memory in the buffer cache

m Caching: don't force every process to read every file in entirety when it loads

libc.so

libc.so

Process A Buffer Cache Process B

Review

e The UNIX file system provides a naming and name resolution system for user data, through files and directories
e The UNIX file system is designed to use abstraction and layering so that it's easy to use new file systems and use

existing file systems on new devices

= Processes use the abstraction of a file descriptor, which refers to an open file in the file entry table

= A file entry refers to a vnode, which describes the actual file itself
= There can be many file descriptors for the same single file table entry, and many file table entries for the same

vhode
= This layering has important semantics which give you a lot of power in how you manipulate files

e Programs can directly map files into their memory with mmap(), which allows the OS to use caching

m |n-use parts of files are kept in memory by a system called the buffer cache
= The buffer cache allows many programs to share a single copy of data (e.g., library code)

19

Topic #2: Multiprocessing

Key Question: How can my program
create and interact with other programs?

Multiprocessing Terminology

Program: code you write to execute tasks
Process: an instance of your program running; consists of program and execution state.

Key idea: multiple processes can run the same program

22

Multiprocessing Terminology

Program: code you write to execute tasks
Process: an instance of your program running; consists of program and execution state.

Key idea: multiple processes can run the same program

Process 5621

main (argc, *argv([]) {
printf ("Hello, world!\n");
printf ("Goodbye!\n");

0;

22

Multiprocessing Terminology

Program: code you write to execute tasks
Process: an instance of your program running; consists of program and execution state.

Key idea: multiple processes can run the same program

Process 5621

printf("Hello, world!\n");

22

Multiprocessing Terminology

Program: code you write to execute tasks
Process: an instance of your program running; consists of program and execution state.

Key idea: multiple processes can run the same program

Process 5621

printf ("Goodbye!\n");

22

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

23

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

e "simultaneously" = switch between them so fast humans don't notice

23

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

e "simultaneously" = switch between them so fast humans don't notice
e Your program thinks it's the only thing running

23

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

e "simultaneously" = switch between them so fast humans don't notice
e Your program thinks it's the only thing running
e OS schedules processes - who gets to run when

23

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

e "simultaneously" = switch between them so fast humans don't notice
e Your program thinks it's the only thing running
e OS schedules processes - who gets to run when
e Each process gets a little time, then has to wait

23

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

e "simultaneously" = switch between them so fast humans don't notice
e Your program thinks it's the only thing running
e OS schedules processes - who gets to run when
e Each process gets a little time, then has to wait

e Many times, waiting is good! E.g. waiting for key press, waiting for disk

Multiprocessing

Your computer runs many processes simultaneously - even with just 1 processor core (how?)

e "simultaneously" = switch between them so fast humans don't notice

e Your program thinks it's the only thing running

e OS schedules processes - who gets to run when

e Each process gets a little time, then has to wait

e Many times, waiting is good! E.g. waiting for key press, waiting for disk
e Caveat: multicore computers can truly multitask

Playing With Processes

When you run a program from the terminal, it runs in a new process.

e The OS gives each process a unique "process ID" number (PID)
e PIDs are useful once we start managing multiple processes
o getpid() returns the PID of the current process

$./getpid
My process ID is 18814

$./getpid
main (argc, *argv[]) { My process ID is 18831
myPid = getpid();
printf ("My process ID is %d\n", myPid);
0;

1
2
3
4
5
6
7
8
9

24

fork ()

Process A

main (argc, *argv[]) {
printf ("Hello, world!\n");
fork();
printf ("Goodbye!\n");

0;

$./myprogram

25

fork ()

Process A

printf ("Hello, world!\n");

$./myprogram
Hello, world!

26

fork ()

Process A

$./myprogram
Hello, world!

26

fork ()

Process A

3 fork();

$./myprogram
Hello, world!

Process B

27

fork ()

Process A

printf ("Goodbye!\n");

$./myprogram
Hello, world!
Goodbye!
Goodbye!

Process B

printf ("Goodbye!\n");

28

fork ()
fork() creates a second process that is a clone of the first:

Process B

Process A

$./myprogram
Hello, world!
Goodbye!
Goodbye!

28

fork ()

Process A

main (argc, *argv[]) {
X = 2;
printf("Hello, world!\n");
fork();
printf ("Goodbye, %d!\n", x);
0;

$./myprogram2

29

fork ()

Process A

printf ("Hello, world!\n");

$./myprogram2
Hello, world!

30

fork ()

Process A

$./myprogram2
Hello, world!

30

fork ()

Process A

$./myprogram2
Hello, world!

Process B

31

fork ()

Process A

printf ("Goodbye, %d!\n", x);

$./myprogram2
Hello, world!
Goodbye, 2!
Goodbye, 2!

Process B

printf ("Goodbye, %d!\n", x);

32

fork ()
fork() creates a second process that is a clone of the first:

Process B

Process A

$./myprogram?2
Hello, world!
Goodbye, 2!
Goodbye, 2!

32

fork ()

fork() creates a second process that is a clone of the first:

33

fork ()

fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process

33

fork ()

fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process
= The child starts execution on the next program instruction. The parent continues execution with the
next program instruction.

33

fork ()

fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process
= The child starts execution on the next program instruction. The parent continues execution with the

next program instruction.
= fork() is called once, but returns twice (why?)

33

fork ()

fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process
= The child starts execution on the next program instruction. The parent continues execution with the

next program instruction.
= fork() is called once, but returns twice (why?)
= Everythingis duplicated in the child process
» File descriptors (increasing reference counts on file table entries)

= Mapped memory regions (the address space)
= Regions like stack, heap, etc. are copied

33

£ k Am | the parent or the child?
ork () OO< >Oo

O

Process A

main (argc,
X = 2;

*argv[]) {

printf ("Hello, world!\n");

fork();
printf ("Goodbye,
0;

$d!\n", x);

O

Process B

main (argc,
X = 2;

*argv[]) {

printf ("Hello, world!\n");

fork();
printf ("Goodbye,
0;

$d!\n", x);

34

£ k Am | the parent or the child?
ork () OO(>Oo

O O

Process A Process B

main (argc, *argv[]) { main (argc, *argv[]) {
X = 2; X = 2;
printf("Hello, world!\n"); printf("Hello, world!\n");
fork(); fork();
printf ("Goodbye, %d!\n", x); printf ("Goodbye, %d!\n", x);
0; 0;

Key Idea: the return value of fork() is different in the parent and the child.

34

fork ()

fork() creates a second process that is a clone of the first:

» parent (original) process forks off a child (new) process
= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

35

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

main (argc, *argv[]) {
printf("Hello, world!\n");
pidOrZero = fork();
printf("fork returned %d\n", pidOrZero);
0;

$./myprogram

36

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

printf("Hello, world!\n");

$./myprogram2
Hello, world!

37

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

pidOrZero = fork();

$./myprogram2
Hello, world!

37

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

pidOrZero = fork(); pidOrZero = fork();

$./myprogram2
Hello, world!

38

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

printf ("fork returned %d\n", pidOrZero); printf ("fork returned %d\n", pidOrZero);

$./myprogram
Hello, world!
fork returned 111
fork returned O

39

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

$./myprogram
Hello, world!
fork returned 111
fork returned O

39

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110 Process 111

printf ("fork returned %d\n", pidOrZero); printf ("fork returned %d\n", pidOrZero);

$./myprogram
Hello, world! Hello, world!

fork returned 111 % fork returned O
fork returned 111

$./myprogram

fork returned O

40

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

printf ("fork returned %d\n", pidOrZero); printf ("fork returned %d\n", pidOrZero);

We can no longer assume the order in which

our program will execute! The OS decides the
order.

$./myprogram ¢ ey pra gL G
Hello, world! Hello, world!
fork returned 111 fork returned 0
fork returned O fork returned 111

41

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)

» |n the child, fork() will return O (this is not the child's PID, it's just O)

Process 110

We can no longer assume the order in which

our program will execute! The OS decides the
order.

$./myprogram ¢ ey pra gL
Hello, world! Hello, world!
fork returned 111 fork returned 0
fork returned O fork returned 111

41

fork ()

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return O (this is not the child's PID, it's just O)

A process can use getppid() to get the PID of its parent

if fork() returns < O, that means an error occurred

main (argc, *argv([]) {
printf ("Greetings from process %d! (parent %d)\n", getpid(), getppid());
pidOrZero = fork();
assert (pidOrZero >= 0);
printf ("Bye-bye from process %d! (parent %d)\n", getpid(), getppid());
0;

$./basic-fork

Greetings from process 29686! (parent 29351)
Bye-bye from process 29686! (parent 29351)
Bye-bye from process 29687! (parent 29686)

$./basic-fork

Greetings from process 29688! (parent 29351)
Bye-bye from process 29689! (parent 29688
Bye-bye from process 29688! (parent 29351)

42

fork ()

= |nthe parent, fork() will return the PID of the child (only way for parent to get child's PID)
» |n the child, fork() will return O (this is not the child's PID, it's just O)
= A process can use getppid() to get the PID of its parent

if fork() returns < O, that means an error occurred

main (argc, *argv([]) {
printf ("Greetings from process %d! (parent %d)\n", getpid(), getppid());
pidOrZero = fork();

assert (pidOrZero >= 0);
printf("Bye-bye from process 3d! (parent %d)\n", getpid(), getppid());
0;

$./basic-fork o o .)
s e O FEAOEL (v SEEEN) e The parent of the original process is the shell - the

Bye-bye from process 29686! (parent 29351) 1 1
Bye-bye from process 29687! (parent 29686) program that you runin the termlnal'

$./basic-fork

Greetings from process 29688! (parent 29351)
Bye-bye from process 29689! (parent 29688
Bye-bye from process 29688! (parent 29351)

42

fork ()

In the parent, fork() will return the PID of the child (only way for parent to get child's PID)
In the child, fork() will return O (this is not the child's PID, it's just O)

A process can use getppid() to get the PID of its parent

if fork() returns < O, that means an error occurred

main (argc, *argv([]) {
printf ("Greetings from process %d! (parent %d)\n", getpid(), getppid());
pidOrZero = fork();

assert (pidOrZero >= 0);
printf("Bye-bye from process 3d! (parent %d)\n", getpid(), getppid());
0;

$./basic-fork o o .)
s e O FEAOEL (v SEEEN) e The parent of the original process is the shell - the
Bye-bye from process 29686! (parent 29351) 1 1

Bye-bye from process 29687! (parent 29686) program that you run in the termlnal-

S e The ordering of the parent and child output is
Greetings from process 29688! (parent 29351) nondeterministic. Sometimes the parent prints first,

Bye-bye from process 29689! (parent 29688
Bye-bye from process 29688! (parent 29351) and sometimes the child prints first!

42

Debugging Multiprocess Programs

How do | debug two processes at once? gdb has built-in support for debugging multiple processes

e set detach-on-fork off

= This tells gdb to capture any fork'd processes, though it pauses them upon the fork.

info inferiors
= This lists the processes that gdb has captured.

inferior X

= Switch to a different process to debug it.

detach inferior X

= Tell gdb to stop watching the process, and continue it

You can see an entire debugging session on the basic-fork program right here.

43

https://web.stanford.edu/class/cs110/examples/processes/basic-fork_gdb.txt

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

*kTrail = "abc";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

1
2
3
4
5
6
7
8
9

[
o

0;

=
=

44

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

0; i < strlen(kTrail); i++) {

44

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

printf ("%c\n", kTrail[i]);

44

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

44

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

pidorzero = fork();

45

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

assert (pidOrZero >= 0);

assert (pidOrZero >= 0);

45

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

0; i < strlen(kTrail); i++) {

(i =0; i < strlen(kTrail); i++) {

45

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

printf ("%c\n", kTrail[i]);

printf("%c\n", kTrail[i]);

45

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

pidorzero = fork();

45

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

pidOrZero = fork(); pidorzero = fork();

46

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

assert (pidOrZero >= 0);

assert (pidOrZero >= 0); assert (pidOrZero >= 0);

46

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

0; i < strlen(kTrail); i++) {

(i = 0; i < strlen(kTrail); i++) { (i =0; i < strlen(kT—~31)- #+av ¢

46

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

printf ("%c\n", kTrail[i]);

printf("%c\n", kTrail[i]); printf("%c\n", kTrail[i])

46

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

pidOrZero = fork(); pidorzero = fork();

46

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

pidOrZero = fork();

pidorZero = fork();

47

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

assert (pidOrZero >= 0);

assert (pidOrZero >= 0);

47

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

47

Fork Tree

Here's a useful (but mind-melting) example of a program where child processes themselves call fork():

47

Fork Tree

*kTrail = "abc";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

1
2
3
4
5
6
7
8
9

0;

Observations:

e One ais printed by the original process.
e The original process and its child each print b.
e The two bs may not be consecutive - why?

48

Fork Tree

*kTrail = "abc";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++)
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

[

0;

1
2
3
4
5
6
7
8
9
0
1

[

Observations:

e One ais printed by the original process.
e The original process and its child each print b.
e The two bs may not be consecutive - why?

{

Q Qo aoe - n

$
a
b
b
c
c
c
c

./fork-puzzle

./fork-puzzle

./fork-puzzle

What happened here?

48

Fork Tree

*kTrail = "abc";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

1
2
3
4
5
6
7
8
9

Questions:

e 1aisprinted.
e 2 bs are printed.
e How many cs get printed? ->4: parent, child 1, child 2, Gchild 1

e Who prints nothing? -> Child 3, GGchild 1, Gchild 3, Gchild 2

49

Why Fork?

50

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

50

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

e Forkis used pervasively in systems. A few examples:

50

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

e Forkis used pervasively in systems. A few examples:

= When your kernel boots, it starts the system.d program, which forks off all of the services and
systems for your computer

o Let's take a look with pstree

50

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

e Forkis used pervasively in systems. A few examples:

= When your kernel boots, it starts the system.d program, which forks off all of the services and
systems for your computer

o Let's take a look with pstree
= Your window manager spawns processes when you start programs

50

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

e Forkis used pervasively in systems. A few examples:

= When your kernel boots, it starts the system.d program, which forks off all of the services and
systems for your computer

o Let's take a look with pstree

= Your window manager spawns processes when you start programs
= Network servers spawn processes when they receive connections

o E.g., when you ssh into myth, sshd spawns a process to run your shell in (after setting up file
descriptors for your terminals over ssh)

50

Why Fork?

e Forkis used pervasively in applications. A few examples:

= Running a program in a shell: the shell forks a new process to run the program
= Servers: most network servers run many copies of the server in different processes (why?)

e Forkis used pervasively in systems. A few examples:

= When your kernel boots, it starts the system.d program, which forks off all of the services and
systems for your computer

o Let's take a look with pstree

= Your window manager spawns processes when you start programs
= Network servers spawn processes when they receive connections

o E.g., when you ssh into myth, sshd spawns a process to run your shell in (after setting up file
descriptors for your terminals over ssh)

e Processes are the first step in understanding concurrency, another key principle in computer
systems; we'll look at other forms of concurrency later in the quarter

50

Review

e Aprocessis aninstance of a program

e Each process has aunique PID

o fork() creates a clone of the current process, and they run concurrently

e The parent and child are identical except for fork's return value (child PID for parent, O for
child)

e This concurrency lets your program multitask: much of the quarter will look at the
complications

= Nondeterministic ordering of execution across processes
= A parent can wait for its children to terminate

51

Review

e Aprocessis aninstance of a program

e Each process has a unique PID

o fork() creates a clone of the current process, and they run concurrently

e The parent and child are identical except for fork's return value (child PID for parent, O for
child)

e This concurrency lets your program multitask: much of the quarter will look at the
complications

= Nondeterministic ordering of execution across processes
= A parent can wait for its children to terminate

Next time: the power of the fork()

51

Extra Problems

Fork Tree Round 2

*kTrail = "abcd";

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

1
2
3
4
5
6
7
8
9

0;

Questions:

e How many total processes are there when running this program?
e How many times is d printed?

Could ad be printed before an: "a"? "b"? "c"?

e How many processes don't print anything?

53

Fork Tree Round 2

*kTrail = "abcd";

From earlier fork tree:

main (argc, *argv[]) {
(i =0; i < strlen(kTrail); i++) {
printf("%c\n", kTrail[i]);
pidOrZero = fork();
assert (pidOrZero >= 0);

1
2
3
4
5
6
7
8
9

0;

Questions:

e How many total processes are there when running this program?
e How many times is d printed?

e Could ad be printed before an: "a"? "b"? "c"?

e How many processes don't print anything?

16 total processes
d is printed 8 times

beforea"b" or "c
8 processes print nothing

54

