Lecture 05: £ork and Understanding execvp

Principles of Computer Systems

Winter 2021

Stanford University

Computer Science Department

Instructors: Chris Gregg and
Nick Troccoli

Reading: Bryant & O'Hallaron,
Chapters 10 and 8

PDF of this presentation

https://web.stanford.edu/class/cs110/static/lectures/cs110-lecture-05-understanding-execvp.pdf

CS110 Topic 2: How can our programs
create and interact with other programs?

Learning About Processes

-~

Creating
processes and
running other

programs

~

>

a I

Inter-process
communication

/

This lecture

-

>

/

Lecture 6

Signals

Lecture 7

Lecture 8

Learning Goals

e Get more practice with using fork() to create new processes
e Understand how to use waitpid() to coordinate between processes

e Learn how execvp() lets us execute another program within a process
e End Goal: write our first implementation of a shell!

@ ® i nicktroccoli — troccoli@myth52: ~/CS110-Winter-2020/lecture-examples/processes — ssh troccoli@myth.stanford.edu...
: $./first-shell

> ls fork*.c

fork-ints.c forkprob@.c forkprobloop.c fork-puzzle.c
return code = 0

> make first-shell

make: 'first-shell' is up to date.

return code = 0

> echo "Hello, world!"
Hello, world!

return code = 0

>

first-shell-soln.c

Lecture Plan

e Reintroducing fork()

e Practice: Seeing...Quadruple?

e waitpid() and waiting for child processes
e Demo: Waiting For Children

o execvp()

e Puttingit all together: first-shell

Lecture Plan

e Reintroducing fork()

e Practice: Seeing...Quadruple?

e waitpid() and waiting for child processes
e Demo: Waiting For Children

o execvp()

e Puttingit all together: first-shell

fork ()

e A system call that creates a new child process

e The "parent" is the process that creates the other "child" process
e From then on, both processes are running the code after the fork
e The child process is identical to the parent, except:

= it has a new Process ID (PID)
= for the parent, fork() returns the PID of the child; for the child, fork() returns O
= fork() is called once, but returns twice

pidOrZero = fork();

1
2
3

printf("This is printed by two processes.\n");

fork ()

What happens to variables and addresses?

main (argc, *argv[]) {
str[128];

strcpy(str, "Hello");

printf("str's address is %p\n", str);

pid = fork();

O ~NOUL i WN K

(pid == 0) {

printf("I am the child. str's address is %p\n", str);
strcpy(str, "Howdy");
printf ("I am the child and I changed str to %s. str's address is still %p\n", str, str);

{

printf ("I am the parent. str's address is %p\n", str);
printf("I am the parent, and I'm going to sleep for 2 seconds.\n");
sleep(2);

printf ("I am the parent. I just woke up. str's address is %p, and its value is %s\n", str, str);

0;

fork-copy.c

fork ()

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8c£fa9990
am the parent, and I'm going to sleep for 2 seconds.

am the child. str's address is 0x7£f£fc8c£fa9990
am the child and I changed str to Howdy. str's address is still 0x7f£fc8cfa9990
am the parent. I just woke up. str's address is 0x7f£fc8cfa9990, and its value is Hello

How can the parent and child use the same address to store different data?

e Each program thinks it is given all memory addresses to use

e The operating system maps these virtual addresses to physical addresses

e When a process forks, its virtual address space stays the same

e The operating system will map the child's virtual addresses to different
physical addresses than for the parent

fork ()

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8c£fa9990
am the parent, and I'm going to sleep for 2 seconds.

am the child. str's address is 0x7£f£fc8c£fa9990
am the child and I changed str to Howdy. str's address is still 0x7f£fc8cfa9990
am the parent. I just woke up. str's address is 0x7f£fc8cfa9990, and its value is Hello

Isn't it expensive to make copies of all memory when forking?

e The operating system only lazily makes copies.

e |t will have them share physical addresses until one of them changes its
memory contents to be different than the other.

e This is called copy on write (only make copies when they are written to).

10

Example: Loaded Dice

main (*argv[]) {

srandom (time ())

printf ("This program will make you question what 'randomness' means...\n");
pidOrZero = fork();

oO~NOUTLdWN K

(pidOrzZero != 0) {
diceRoll = (random() % 6) + 1;

printf("I am the parent and I rolled a %d\n", diceRoll);
sleep(1l);
{
sleep(l);
diceRoll = (random() % 6) + 1;
printf("I am the child and I'm guessing the parent rolled a %d\n", diceRoll);

0;

not-so-random.c

Example: Loaded Dice

main (*argv[]) {

srandom (time ())

printf ("This program will make you question what 'randomness' means...\n");
pidOrZero = fork();

ONOULIBBWINRE

(pidOrzZero != 0) {
diceRoll = (random() % 6) + 1;

printf("I am the parent and I rolled a %d\n", diceRoll);
sleep(1l);
{
sleep(l);
diceRoll = (random() % 6) + 1;
printf("I am the child and I'm guessing the parent rolled a %d\n", diceRoll);

Key Idea: all state is copied from the parent to the child, even the random number
generator seed! Both the parent and child will get the same return value from random().

not-so-random.c

11

Lecture Plan

Reintroducing fork()

Practice: Seeing...Quadruple?

waitpid() and waiting for child processes
Demo: Waiting For Children

execvp()

Putting it all together: first-shell

12

It would be nice it there was a
function we could call that would

"stall” our program until the child is
finished.

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status,

options);

14

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status,

e pid: the PID of the child to wait on (we'll see other options later)

options);

14

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

e pid: the PID of the child to wait on (we'll see other options later)
e status: where to put info about the child's termination (or NULL)

14

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

e pid: the PID of the child to wait on (we'll see other options later)
e status: where to put info about the child's termination (or NULL)
e options: optional flags to customize behavior (always O for now)

14

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

pid: the PID of the child to wait on (we'll see other options later)

status: where to put info about the child's termination (or NULL)
e options: optional flags to customize behavior (always O for now)

e the function returns when the specified child process exits

14

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

pid: the PID of the child to wait on (we'll see other options later)

status: where to put info about the child's termination (or NULL)

e options: optional flags to customize behavior (always O for now)

e the function returns when the specified child process exits

e thereturn value is the PID of the child that exited, or -1 on error (e.g. no child to wait on)

14

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

pid: the PID of the child to wait on (we'll see other options later)

status: where to put info about the child's termination (or NULL)

e options: optional flags to customize behavior (always O for now)

e the function returns when the specified child process exits

e thereturn value is the PID of the child that exited, or -1 on error (e.g. no child to wait on)
If the child process has already exited, this returns immediately - otherwise, it blocks

14

waitpid ()

main (argc, *argv[]) {
printf ("Before.\n");
pidOrZero = fork();

(pidOrZero == 0) {

sleep(2);

printf ("I (the child) slept and the parent still waited up for me.\n");
{

O~NOUIL i WN K

result = waitpid(pidOrZero, , 0);
printf ("I (the parent) finished waiting for the child. This always prints last.\n");

0;

$./waitpid

Before.

I (the child) slept and the parent still waited up for me.

I (the parent) finished waiting for the child. This always prints last.

$

>

M waitpid.c

waitpid ()

printf ("I (the child) slept and the parent still waited up for me.\n");

$./waitpid
Before.

I (the child) slept and the parent still waited up for me.

I (the parent) finished waiting for the child.
$

@ waitpid.c

This always prints last.

15

waitpid ()

printf ("I (the parent) finished waiting for the child.

$./waitpid
Before.

This always prints last.\n");

I (the child) slept and the parent still waited up for me.
I (the parent) finished waiting for the child. This always prints last.

$

@ waitpid.c

15

waitpid ()

main (argc, *argv[]) {
printf ("Before.\n");
pidOrZero = fork();

(pidOrZero == 0) {

sleep(2);

printf ("I (the child) slept and the parent still waited up for me.\n");
{

ONOULdWN R

result = waitpid(pidOrZero, , 0);
printf ("I (the parent) finished waiting for the child. This always prints last.\n");

0;

$./waitpid

Before.

I (the child) slept and the parent still waited up for me.

I (the parent) finished waiting for the child. This always prints last.
$

>

M waitpid.c

waitpid ()

Pass in the address of an integer as the second parameter to get the child's status.

main (argc, *argv[]) {
pid = fork();
(pid == 0) {
printf("I'm the child, and the parent will wait up for me.\n");
110;
{
status;
result = waitpid(pid, &status, 0);

OOV WIN R

(WIFEXITED (status)) {
printf("Child exited with status %d.\n", WEXITSTATUS (status));

{
printf("Child terminated abnormally.\n");

0;

$./separate

I am the child, and the parent will wait up for me.
Child exited with status 110.

$

separate.c

16

waitpid ()

Pass in the address of an integer as the second parameter to get the child's status.

result = waitpid(pid, &status, 0);

$./separate

I am the child, and the parent will wait up for me.
Child exited with status 110.

$

separate.c

e We can use WIFEXITED and
WEXITSTATUS (among
others) to extract info from
the status. (full program, with
error checking, is right here)

16

http://cs110.stanford.edu/lecture-examples/processes/separate.c

waitpid ()

Pass in the address of an integer as the second parameter to get the child's status.

(WIFEXITED (status)) {

$./separate

I am the child, and the parent will wait up for me.
Child exited with status 110.

$

separate.c

e We can use WIFEXITED and
WEXITSTATUS (among
others) to extract info from
the status. (full program, with
error checking, is right here)

e The output will be the same

every time! The parent will
always wait for the child to
finish before continuing.

16

http://cs110.stanford.edu/lecture-examples/processes/separate.c

waitpid ()

Pass in the address of an integer as the second parameter to get the child's status.

printf("Child exited with status %d.\n", WEXITSTATUS (status));

$./separate

I am the child, and the parent will wait up for me.
Child exited with status 110.

$

separate.c

e We can use WIFEXITED and
WEXITSTATUS (among
others) to extract info from
the status. (full program, with
error checking, is right here)

e The output will be the same

every time! The parent will
always wait for the child to
finish before continuing.

16

http://cs110.stanford.edu/lecture-examples/processes/separate.c

waitpid ()

Pass in the address of an integer as the second parameter to get the child's status.

main (argc, *argv[]) {

pid = fork(); e We canuse WIFEXITED and

(pid == 0) {

printf("I'm the child, and the parent will wait up for me.\n"); WEXITSTATUS (among

110;

{ others) to extract info from

status; .
result = waitpid(pid, &status, 0); the status. (full program, with
(WIFEXITED (status)) {) error checking, is right here)
printf("Child exited with status %d.\n", WEXITSTATUS (status)); .

R . . e The output will be the same
printf("Child terminated abnormally.\n"); . .

every time! The parent will

always wait for the child to

finish before continuing.

oOo~NOYUT B WDN R

0;

$./separate

I am the child, and the parent will wait up for me.
Child exited with status 110.

$

separate.c

16

http://cs110.stanford.edu/lecture-examples/processes/separate.c

waitpid ()

A parent process should always wait on its children processes.

17

waitpid ()

A parent process should always wait on its children processes.

e A process that finished but was not waited on by its parent is called a zombie £..

17

waitpid ()

A parent process should always wait on its children processes.

e A process that finished but was not waited on by its parent is called a zombie £..
e Zombies take up system resources (until they are ultimately cleaned up later by the OS)

17

waitpid ()

A parent process should always wait on its children processes.

e A process that finished but was not waited on by its parent is called a zombie £..
e Zombies take up system resources (until they are ultimately cleaned up later by the OS)
e Calling waitpid in the parent "reaps" the child process (cleans it up)

= |f achildis still running, waitpid in the parent will block until it finishes, and then clean it up
= |f a child process is a zombie, waitpid will return immediately and clean it up

17

waitpid ()

A parent process should always wait on its children processes.

e A process that finished but was not waited on by its parent is called a zombie £..
e Zombies take up system resources (until they are ultimately cleaned up later by the OS)
e Calling waitpid in the parent "reaps" the child process (cleans it up)

= |f achildis still running, waitpid in the parent will block until it finishes, and then clean it up
= |f a child process is a zombie, waitpid will return immediately and clean it up

e Orphaned child processes get "adopted" by the init process (PID 1)

17

Make sure to reap your zombie children.

(Wait, what?)

Lecture Plan

Reintroducing fork()

Practice: Seeing...Quadruple?

waitpid() and waiting for child processes
Demo: Waiting For Children

execvp()

Putting it all together: first-shell

19

Waiting On Multiple Children, No Order

A parent can call fork multiple times, but must reap all the child processes.

e A parent can use waitpid to wait on any of its children by passing in -1 as the PID.
o Key ldea: The children may terminate in any order!
e |f waitpid returns -1 and sets errno to ECHILD, this means there are no more children.

Demo: Let's see how we might use this (reap-as-they-exit.c)

reap-as-they-exit.c

20

Waiting On Multiple Children, In Order

What if we want to wait for children in the order in which they were created?
Check out the abbreviated program below (full program with error checking right here):

main (argc, *argv[]) {
children[kNumChildren];

(i = 0; i < kNumChildren;
children[i] = fork();
(children[i] == 0) exit (110 + i);

O~NOYUTL i WN K

i = 0; i < kNumChildren; i++) {
status;
pid = waitpid(children[i], &status, 0);
assert (WIFEXITED (status));
printf("Child with pid %d accounted for (return status of 2d).\n", children[i], WEXITSTATUS(status));

0;

reap-in-fork-order.c

21

http://web.stanford.edu/class/cs110/lecture-examples/processes/reap-in-fork-order.c

Waiting On Multiple Children, In Order

What if we want to wait for children in the order in which they were created?
Check out the abbreviated program below (full program with error checking right here):

i = 0; i < kNumChildren; i++) {

reap-in-fork-order.c

21

http://web.stanford.edu/class/cs110/lecture-examples/processes/reap-in-fork-order.c

Waiting On Multiple Children, In Order

What if we want to wait for children in the order in which they were created?
Check out the abbreviated program below (full program with error checking right here):

(children[i] == 0) exit (110 + i);

reap-in-fork-order.c

21

http://web.stanford.edu/class/cs110/lecture-examples/processes/reap-in-fork-order.c

Waiting On Multiple Children, In Order

What if we want to wait for children in the order in which they were created?
Check out the abbreviated program below (full program with error checking right here):

i = 0; i < kNumChildren; i++) {

reap-in-fork-order.c

21

http://web.stanford.edu/class/cs110/lecture-examples/processes/reap-in-fork-order.c

Waiting On Multiple Children, In Order

What if we want to wait for children in the order in which they were created?

Check out the abbreviated program below (full program with error checking right here):

pid = waitpid(children[i], &status, 0);

reap-in-fork-order.c

21

http://web.stanford.edu/class/cs110/lecture-examples/processes/reap-in-fork-order.c

Waiting On Multiple Children, In Order

What if we want to wait for children in the order in which they were created?

Check out the abbreviated program below (full program with error checking right here):

O~NOUTLdWDN R

reap-in-fork-order.c

main (argc, *argv[]) {

children[kNumChildren];

(i = 0; i < kNumChildren;
children[i] = fork();
(children[i] == 0) exit (110 + i);

i = 0; i < kNumChildren; i++) {
status;
pid = waitpid(children[i], &status, 0);
assert (WIFEXITED(status));
printf("Child with pid %d accounted for (return status of %d).\n", children[i], WEXITSTATUS (status));

0;

21

http://web.stanford.edu/class/cs110/lecture-examples/processes/reap-in-fork-order.c

Waiting On Multiple Children, In Order

e This program reaps processes in the order they were spawned.
e Child processes may not finish in this order, but they are reaped in this order.

m E.g first child could finish last, holding up first loop iteration

e Sample run below - the pids change between runs, but even those are guaranteed to be
published in increasing order.

$./reap-in-fork-order

Child with pid 12649 accounted (return status
Child with pid 12650 accounted (return status
Child with pid 12651 accounted (return status
Child with pid 12652 accounted (return status

Child with pid 12653 accounted (return status
Child with pid 12654 accounted (return status
Child with pid 12655 accounted (return status
Child with pid 12656 accounted (return status

$

Lecture Plan

Reintroducing fork()

Practice: Seeing...Quadruple?

waitpid() and waiting for child processes
Demo: Waiting For Children

execvp()

Putting it all together: first-shell

23

execvp ()

The most common use for fork is not to spawn multiple processes to split up work, but instead to
run a completely separate program under your control and communicate with it.

e Thisiswhat ashell is; it is a program that prompts you for commands, and it executes those
commands in separate processes. Let's take a look.

24

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

25

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

It runs the executable at the specified path, completely cannibalizing the current process.

e |f successful, execvp never returns in the calling process
e |f unsuccessful, execvp returns -1

25

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

It runs the executable at the specified path, completely cannibalizing the current process.

e |f successful, execvp never returns in the calling process
e |f unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

e For our programs, path and argv[0] will be the same

25

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

It runs the executable at the specified path, completely cannibalizing the current process.

e |f successful, execvp never returns in the calling process
e |f unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

e For our programs, path and argv[0] will be the same

execvp has many variants (execle, execlp, and so forth. Typeman execvp for
more). We rely on execvp in CS110.

25

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

main (argc, *argv([]) {
*args[] = {"/bin/1ls", "-1", "/usr/class/csll0/lecture-examples"”,
execvp(args[0], args);
printf("This only prints if an error occurred.\n");
0;

$./execvp-demo

total 26
troccoli operator 3 cpp-primer
troccoli operator cslO07review
troccoli operator filesystems
troccoli operator lambda
poohbear root map-reduce
poohbear root networking

drwxr-xr-x poohbear root processes

drwxr-xr-x poohbear root threads-c

drwxr-xr-x poohbear root threads-cpp

$

1
2
3
4
5
6
7
8

execvp-demo.c

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

printf("This only prints if an error occurred.\n");

$./execvp-demo

total 26
troccoli operator 3 cpp-primer
troccoli operator cslO07review
troccoli operator : filesystems
troccoli operator 3 lambda
poohbear root 3 map-reduce
poohbear root 3 networking

drwxr-xr-x poohbear root 3 processes

drwxr-xr-x poohbear root 3 threads-c

drwxr-xr-x poohbear root 3 threads-cpp

1
2
3
4
5
6
7
8

Lecture Plan

Reintroducing fork()

Practice: Seeing...Quadruple?

waitpid() and waiting for child processes
Demo: Waiting For Children

execvp()

Putting it all together: first-shell

27

What Is A Shell?

A shell is essentially a program that repeats asking the user for a command and running that
command (Demo: first-shell-soln.c)

first-shell-soln.c

28

What Is A Shell?

A shell is essentially a program that repeats asking the user for a command and running that
command (Demo: first-shell-soln.c)

e Component 1: loop for asking for user input

first-shell-soln.c

28

What Is A Shell?

A shell is essentially a program that repeats asking the user for a command and running that
command (Demo: first-shell-soln.c)

e Component 1: loop for asking for user input
e Component 2: way to run an arbitrary command

first-shell-soln.c

28

system()

The built-in system function can execute a given shell command.

system(*command) ;

e command is a shell command (like you would type in the terminal); e.g. "Is" or "./myProgram"
e system forks off a child process that executes the given shell command, and waits for it
e on success, system returns the termination status of the child

system-demo.c

29

system()

The built-in system function can execute a given shell command.

system(*command) ;

e command is a shell command (like you would type in the terminal); e.g. "Is" or "./myProgram"
e system forks off a child process that executes the given shell command, and waits for it
e on success, system returns the termination status of the child

main (argc, *argv([]) {
status = system(argv[l]);
printf("system returned %d\n", status);

0;

system-demo.c

29

system()

The built-in system function can execute a given shell command.

system(*command) ;

e command is a shell command (like you would type in the terminal); e.g. "Is" or "./myProgram"

e system forks off a child process that executes the given shell command, and waits for it
e on success, system returns the termination status of the child

main (argc, *argv[]) {

status = system(argv[l]);
printf("system returned %d\n", status);

0;

system-demo.c

total 26

1
2
3
4
5
6
7
8

troccoli
troccoli
troccoli
troccoli
poohbear
poohbear
poohbear
poohbear
poohbear

system returned O

$

$./system-demo "ls -1"

operator
operator
operator
operator
root
root
root
root
root

cpp-primer
cslO07review
filesystems
lambda
map-reduce
networking
processes
threads-c
threads-cpp

29

mysystem()
We can implement our own version of system with fork(), waitpid() and execvp()!

mysystem(*command) ;

1. call fork to create a child process
2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid and then return exit status info

30

mysystem()
We can implement our own version of system with fork(), waitpid() and execvp()!

mysystem(*command) ;

1. call fork to create a child process
2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid and then return exit status info

One twist; not all shell commands are executable programs, and some need parsing.

e We can't just pass the command to execvp
e Solution: there is a program called sh that runs any shell command

= e.g./bin/sh-c"ls-a" runs the command "Is -a"
= We can call execvp to run /bin/sh with -c and the command as arguments

30

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

mysystem(*command) {
pidOrZero = fork();
(pidOrZero == 0) {
*arguments[] = {"/bin/sh",
execvp (arguments[0], arguments);

'-c", command, };

exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

1
2
K
4
5
6
7
8

status;
waitpid(pidOrZero, &status, 0);
WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

pidOrZero = fork();

e |f execvp returns at all, an error occurred

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

(pidOrZero == 0) {

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because
execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

*arguments[] = {"/bin/sh", "-c", command, };

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because
execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

execvp (arguments[0], arguments);

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because
execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because
execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

waitpid(pidOrZero, &status, 0);

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because
execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because
execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

mysystem()

Here's the implementation, with minimal error checking (the full version is right here):

mysystem(*command) {
pidOrZero = fork();
(pidOrZero == 0) {
*arguments[] = {"/bin/sh", "-c¢", command, };
execvp (arguments[0], arguments);

exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

1
2
3
4
5
6
7
8

status;
waitpid(pidOrZero, &status, 0);
WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);

e |f execvp returns at all, an error occurred
e Why not call execvp inside parent and forgo the child process altogether? Because

execvp would consume the calling process, and that's not what we want.

first-shell-soln.c

31

http://cs110.stanford.edu/lecture-examples/processes/first-shell-soln.c

Lecture Recap

e Reintroducing fork()

e Practice: Seeing...Quadruple?

e waitpid() and waiting for child processes
e Demo: Waiting For Children

o execvp()

e Puttingit all together: first-shell

Next time: Interprocess communication

32

Practice Problems

Practice: fork()

O~NOUI I WN

main (argc, *argv[]) {

printf ("Starting the program\n");
pidOrZerol fork();
pidOrZero2 fork();

(pidOrZerol != 0 && pidOrZero2 != 0) {
printf ("Hello\n");

(pidOrZero2 != 0) {
printf("Hi there\n");

0;

How many processes run in total?
a)l b2 ¢3 d4

How many times is "Hello" printed?
a)l b2 ¢3 d4

How many times is "Hi there" printed?
a)l b2 ¢3 d4

34

Practice: fork()

main (argc, *argv[]) {

printf("Starting the program\n");
pidOrZerol = fork();
pidOrZero2 = fork();

(pidOrZerol != 0 && pidOrZero2 != 0) {
printf ("Hello\n");

(pidOrZero2 != 0) {
printf ("Hi there\n");

0;

Waiting On Children

What if we want to spawn a single child and wait for that child before spawning another child?

36

Waiting On Children

What if we want to spawn a single child and wait for that child before spawning another child?
Check out the abbreviated program below (full program with error checking right here):

kNumChildren = 8;\
argc, *argv[]) {
i = 0; i < kNumChildren; i++) {
pidOorZero = fork();
(pidorZero == 0) {
printf("Hello from child %d!\n", getpid());
110 + i;

oNONUTLIdBWINRE

status;
pid = waitpid(pidOrZero, &status, 0);
(WIFEXITED(status)) {
printf("Child with pid %d exited normally with status %d\n", pid, WEXITSTATUS (status));

{
printf("Child with pid %d exited abnormally\n", pid);

spawn-and-reap.c

36

http://web.stanford.edu/class/cs110/lecture-examples/processes/spawn-and-reap.c

