
CS110 Lecture 06: Pipes, Signals, and Concurrency

Principles of Computer Systems

Winter 2021
Stanford University
Computer Science Department
Instructors: Chris Gregg and
 Nick Troccoli

PDF of this presentation
1

https://web.stanford.edu/class/cs110/static/lectures/cs110-lecture-06-execvp-pipes-interprocess-communication.pdf

CS110 Topic 2: How can our programs
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication Signals Race Conditions

This lectureLecture 5 Lecture 7 Lecture 8

3

Learning Goals
Get more practice with using fork() and execvp

Learn about pipe and dup2 to create and manipulate file descriptors
Use pipes to redirect process input and output

4

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes
Practice: Implementing subprocess

5

fork()
A system call that creates a new child process
The "parent" is the process that creates the other "child" process
From then on, both processes are running the code after the fork
The child process is identical to the parent, except:

it has a new Process ID (PID)
for the parent, fork() returns the PID of the child; for the child, fork() returns 0
fork() is called once, but returns twice

pid_t pidOrZero = fork();
// both parent and child run code here onwards
printf("This is printed by two processes.\n");

1
2
3

6

waitpid()
A function that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

pid: the PID of the child to wait on, or -1 to wait on any of our children
status: where to put info about the child's termination (or NULL)
options: optional flags to customize behavior (always 0 for now)

The function returns when the specified child process exits.

the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait
on)
If the child process has already exited, this returns immediately - otherwise, it blocks
It's important to wait on all children to clean up system resources

7

execvp is a function that lets us run another program in the current process.
int execvp(const char *path, char *argv[]);

execvp()

It runs the executable at the specified path, completely cannibalizing the current
process.

If successful, execvp never returns in the calling process
If unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

For our programs, path and argv[0] will be the same

execvp has many variants (execle, execlp, and so forth. Type man execvp for
more). We rely on execvp in CS110.

8

Revisiting mysystem
mysystem is our own version of the built-in function system.

It takes in a terminal command (e.g. "ls -l /usr/class/cs110"), executes it in a
separate process, and returns when that process is finished.

We can use fork to create the child process
We can use execvp in that child process to execute the terminal command
We can use waitpid in the parent process to wait for the child to terminate

9

static int mysystem(char *command) {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 // If the child gets here, there was an error
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 // If we are the parent, wait for the child
 int status;
 waitpid(pidOrZero, &status, 0);
 return WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Revisiting mysystem

first-shell-soln.c
10

Revisiting first-shell
int main(int argc, char *argv[]) {
 char command[kMaxLineLength];
 while (true) {
 printf("> ");
 fgets(command, sizeof(command), stdin);

 // If the user entered Ctl-d, stop
 if (feof(stdin)) {
 break;
 }

 // Remove the \n that fgets puts at the end
 command[strlen(command) - 1] = '\0';

 int commandReturnCode = mysystem(command);
 printf("return code = %d\n", commandReturnCode);
 }

 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Our first-shell program is a loop in main that
parses the user input and passes it to
mysystem.

first-shell-soln.c
11

first-shell Takeaways
A shell is a program that repeats: read command from the user, execute that
command
In order to execute a program and continue running the shell afterwards, we fork off
another process and run the program in that process
We rely on fork, execvp, and waitpid to do this!
Real shells have more advanced functionality that we will add going forward.
For your fourth assignment, you'll build on this with your own shell, stsh ("Stanford
shell") with much of the functionality of real Unix shells.

12

More Shell Functionality
Shells have a variety of supported commands:

emacs & - create an emacs process and run it in the background
cat file.txt | uniq | sort - pipe the output of one command to the input of another
uniq < file.txt | sort > list.txt - make file.txt the input of uniq and output sort to list.txt
Let's see how we can implement these - but first, a demo.

13

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes
Practice: Implementing subprocess

14

Supporting Background Execution
Let's make an updated version of mysystem called executeCommand.

15

Supporting Background Execution
Let's make an updated version of mysystem called executeCommand.

Takes an additional parameter bool inBackground

If false, same behavior as mysystem (spawn child, execvp, wait for child)
If true, spawn child, execvp, but don't wait for child

15

Supporting Background Execution
static void executeCommand(char *command, bool inBackground) {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // If we are the child, execute the shell command
 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 // If the child gets here, there was an error
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 // If we are the parent, either wait or return immediately
 if (inBackground) {
 printf("%d %s\n", pidOrZero, command);
 } else {
 waitpid(pidOrZero, NULL, 0);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

second-shell-start.c
16

Supporting Background Execution
static void executeCommand(char *command, bool inBackground) {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // If we are the child, execute the shell command
 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 // If the child gets here, there was an error
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 // If we are the parent, either wait or return immediately
 if (inBackground) {
 printf("%d %s\n", pidOrZero, command);
 } else {
 waitpid(pidOrZero, NULL, 0);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Line 1: Now, the caller can optionally run the command in the background.

second-shell-start.c
17

Supporting Background Execution
static void executeCommand(char *command, bool inBackground) {
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // If we are the child, execute the shell command
 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 // If the child gets here, there was an error
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 // If we are the parent, either wait or return immediately
 if (inBackground) {
 printf("%d %s\n", pidOrZero, command);
 } else {
 waitpid(pidOrZero, NULL, 0);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Lines 11-16: The parent waits on a foreground child, but not a background
child.

second-shell-start.c
18

Supporting Background Execution
int main(int argc, char *argv[]) {
 char command[kMaxLineLength];
 while (true) {
 printf("> ");
 fgets(command, sizeof(command), stdin);

 // If the user entered Ctl-d, stop
 if (feof(stdin)) {
 break;
 }

 // Remove the \n that fgets puts at the end
 command[strlen(command) - 1] = '\0';

 if (strcmp(command, "quit") == 0) break;

 bool isbg = command[strlen(command) - 1] == '&';
 if (isbg) {
 command[strlen(command) - 1] = '\0';
 }

 executeCommand(command, isbg);
 }

 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

In main, we must add two additional things:

Check for the "quit" command to exit
Allow the user to add "&" at the end of a
command to run that command in the
background

Note that a background child isn't reaped!
This is a problem - one we'll learn how to fix
soon.

second-shell-start.c
19

Supporting Background Execution
int main(int argc, char *argv[]) {
 char command[kMaxLineLength];
 while (true) {
 printf("> ");
 fgets(command, sizeof(command), stdin);

 // If the user entered Ctl-d, stop
 if (feof(stdin)) {
 break;
 }

 // Remove the \n that fgets puts at the end
 command[strlen(command) - 1] = '\0';

 if (strcmp(command, "quit") == 0) break;

 bool isbg = command[strlen(command) - 1] == '&';
 if (isbg) {
 command[strlen(command) - 1] = '\0';
 }

 executeCommand(command, isbg);
 }

 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

In main, we must add two additional things:

Check for the "quit" command to exit
Allow the user to add "&" at the end of a
command to run that command in the
background

Note that a background child isn't reaped!
This is a problem - one we'll learn how to fix
soon.

second-shell-start.c
19

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes
Practice: Implementing subprocess

20

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes

What are pipes?
Pipes between processes
Redirecting process I/O

Practice: Implementing subprocess

21

Is there a way that the parent and
child processes can communicate?

22

Interprocess Communication
It's useful for a parent process to communicate with its child (and vice versa)
There are two key ways we will learn to do this: pipes and signals

Pipes let two processes send and receive arbitrary data
Signals let two processes send and receive certain "signals" that indicate
something special has happened.

23

Interprocess Communication
It's useful for a parent process to communicate with its child (and vice versa)
There are two key ways we will learn to do this: pipes and signals

Pipes let two processes send and receive arbitrary data
Signals let two processes send and receive certain "signals" that indicate
something special has happened.

24

Pipes

25

Pipes
How can we let two processes send arbitrary data back and forth?

25

Pipes
How can we let two processes send arbitrary data back and forth?
A core Unix principle is modeling things as files. Could we use a "file"?

25

Pipes
How can we let two processes send arbitrary data back and forth?
A core Unix principle is modeling things as files. Could we use a "file"?
Idea: a file that one process could write, and another process could read?

25

Pipes
How can we let two processes send arbitrary data back and forth?
A core Unix principle is modeling things as files. Could we use a "file"?
Idea: a file that one process could write, and another process could read?
Problem: we don't want to clutter the filesystem with actual files every time two
processes want to communicate.

25

Pipes
How can we let two processes send arbitrary data back and forth?
A core Unix principle is modeling things as files. Could we use a "file"?
Idea: a file that one process could write, and another process could read?
Problem: we don't want to clutter the filesystem with actual files every time two
processes want to communicate.
Solution: have the operating system set this up for us.

It will give us two new file descriptors - one for writing, another for reading.
If someone writes data to the write FD, it can be read from the read FD.
It's not actually a physical file on disk - we are just using files as an abstraction

25

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

26

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6

7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6

7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7

8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6

7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7

8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 read(fds[0], receivedMessage, sizeof(receivedMessage));

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11

12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6

7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7

8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 read(fds[0], receivedMessage, sizeof(receivedMessage));

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11

12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[0]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12

13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 int fds[2];

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2

3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 int result = pipe(fds);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3

4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6

7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[1]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7

8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 read(fds[0], receivedMessage, sizeof(receivedMessage));

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11

12
 close(fds[0]);13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

 close(fds[0]);

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";1
int main(int argc, char *argv[]) {2
 int fds[2];3
 int result = pipe(fds);4
 5
 // Write message to pipe (assuming here all bytes written immediately)6
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);7
 close(fds[1]);8
 9
 // Read message from pipe10
 char receivedMessage[strlen(kPipeMessage) + 1];11
 read(fds[0], receivedMessage, sizeof(receivedMessage));12

13
 printf("Message read: %s\n", receivedMessage);14
 15
 return 0;16
}17

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

27

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

int pipe(int fds[]);

pipe()

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 int result = pipe(fds);

 // Write message to pipe (assuming here all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

$./pipe-demo
Message read: Hello, this message is coming through a pipe.

1
2

pipe-demo.c

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

28

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes

What are pipes?
Pipes between processes
Redirecting process I/O

Practice: Implementing subprocess

29

pipe can allow processes to communicate!

int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

pipe()

30

pipe can allow processes to communicate!

The parent's file descriptor table is replicated in the child - both have pipe access

int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

pipe()

30

pipe can allow processes to communicate!

The parent's file descriptor table is replicated in the child - both have pipe access
E.g. the parent can write to the "write" end and the child can read from the "read"
end

int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

pipe()

30

pipe can allow processes to communicate!

The parent's file descriptor table is replicated in the child - both have pipe access
E.g. the parent can write to the "write" end and the child can read from the "read"
end
Because they're file descriptors, there's no global name for the pipe (another
process can't "connect" to the pipe).

int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

pipe()

30

pipe can allow processes to communicate!

The parent's file descriptor table is replicated in the child - both have pipe access
E.g. the parent can write to the "write" end and the child can read from the "read"
end
Because they're file descriptors, there's no global name for the pipe (another
process can't "connect" to the pipe).
Each pipe is uni-directional (one end is read, the other write)

int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to fds[1]can be read from fds[0]. Returns 0 on success, or -1 on error.

pipe()

30

Here's an example program
showing how pipe works
across processes (full
program link at bottom).

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

parent-child-pipe.c

pipe()

31

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

Make a pipe just like
before.

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

pipe()

parent-child-pipe.c
32

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

The parent must close all
its open FDs. It never uses
the Read FD so we can
close it here.

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

pipe()

parent-child-pipe.c
33

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

Write to the Write FD to
send a message to the
child.

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

pipe()

parent-child-pipe.c
34

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

We are now done with the
Write FD so we can close it
here.

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

pipe()

parent-child-pipe.c
35

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

We wait for the child to
terminate.

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

pipe()

parent-child-pipe.c
36

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Key Idea: when we call
fork, the child gets a copy
of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

pipe()

parent-child-pipe.c
37

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

More specifically, this
duplication means the
child's file descriptor table
entries point to the same
open file table entries as the
parent. Thus, the open file
table entries for the two pipe
FDs both have reference
counts of 2.

pipe()

parent-child-pipe.c
38

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

The child must close all its
open FDs. It never uses
the Write FD so we can
close it here.

pipe()

parent-child-pipe.c
39

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Read from the Read FD to
read the message from the
parent.

pipe()

parent-child-pipe.c
40

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

We are now done with the
Read FD so we can close it
here. Also print the
received message.

pipe()

parent-child-pipe.c
41

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

pipe()

parent-child-pipe.c
42

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

Here, right before the
fork call, the parent has 2
open file descriptors
(besides 0-2): the pipe
Read FD and Write FD.

pipe()

parent-child-pipe.c
42

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

Therefore, when the child is
spawned, it also has the
same 2 open file
descriptors (besides 0-2):
the pipe Read FD and
Write FD.

pipe()

parent-child-pipe.c
43

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

We should close FDs when
we are done with them.
 The parent closes them
here.

pipe()

parent-child-pipe.c
44

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }

 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

We should close FDs when
we are done with them.
 The child closes them
here.

pipe()

parent-child-pipe.c
45

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

https://cplayground.com/?p=eagle-fish-mouse

Trying Out Pipes

46

https://cplayground.com/?p=eagle-fish-mouse

This method of communication between processes relies on the fact that file descriptors are
duplicated when forking.

each process has its own copy of both file descriptors for the pipe
both processes could read or write to the pipe if they wanted.
each process must therefore close both file descriptors for the pipe when finished

This is the core idea behind how a shell can support piping between processes
(e.g. cat file.txt | uniq | sort). Let's see how this works in a shell.

Pipes

47

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes

What are pipes?
Pipes between processes
Redirecting process I/O

Practice: Implementing subprocess

48

Redirecting Process I/O
Each process has the special file descriptors STDIN (0), STDOUT (1) and STDERR
(2)
Processes assume these indexes are for these methods of communication (e.g.
printf always outputs to file descriptor 1, STDOUT).

Idea: what happens if we change FD 1 to point somewhere else?

0 1 2 3

Terminal File

49

Redirecting Process I/O

0 1 2

Terminal

int main() {
 printf("This will print to the terminal\n");
 close(STDOUT_FILENO);

 // fd will always be 1
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

 printf("This will print to myfile.txt!\n");
 close(fd);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11

Idea: what happens if we change FD 1 to point somewhere else?

50

Redirecting Process I/O

0 1 2

Terminal

int main() {
 printf("This will print to the terminal\n");
 close(STDOUT_FILENO);

 // fd will always be 1
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

 printf("This will print to myfile.txt!\n");
 close(fd);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11

Idea: what happens if we change FD 1 to point somewhere else?

51

Redirecting Process I/O

0 1 2

Terminal myfile.txt

int main() {
 printf("This will print to the terminal\n");
 close(STDOUT_FILENO);

 // fd will always be 1
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

 printf("This will print to myfile.txt!\n");
 close(fd);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11

Idea: what happens if we change FD 1 to point somewhere else?

52

Redirecting Process I/O

0 1 2

Terminal myfile.txt

int main() {
 printf("This will print to the terminal\n");
 close(STDOUT_FILENO);

 // fd will always be 1
 int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

 printf("This will print to myfile.txt!\n");
 close(fd);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11

Idea: what happens if we change FD 1 to point somewhere else?

53

Redirecting Process I/O

0 1 2

Terminal

Idea: what happens if we change a special FD to point somewhere else?

Could we do this with a pipe?

0 1 2

pipe
READ

Process 1 Process 2

pipe
WRITE

54

Why would this be useful?

Redirecting Process I/O
I/O redirection and pipes allow us to handle piping in our shell: e.g. cat file.txt | sort

0 1 2

Terminal

0 1 2

pipe
READ

cat sort

pipe
WRITE

55

Shell creates three child processes: cat, uniq and sort
Shell creates two pipes: one between cat and sort, one between sort and uniq

cat sort uniq

terminal in terminal out

pipe1 pipe2

Process stdin stdout

cat terminal pipe1[1]

sort pipe1[0] pipe2[1]

uniq pipe2[0] terminal

int pipe1[2];

int pipe2[2];

pipe(pipe1);

pipe(pipe2);

56

Redirecting Process I/O
I/O redirection and pipes allow us to handle piping in our shell: e.g. cat file.txt | sort | uniq

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

Redirecting Process I/O

57

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

Redirecting Process I/O

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index.
 If the second parameter is an already-open file descriptor, it is closed before being
used.

int dup2(int oldfd, int newfd);

57

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

Redirecting Process I/O

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index.
 If the second parameter is an already-open file descriptor, it is closed before being
used.

int dup2(int oldfd, int newfd);

Example: we can use dup2 to copy the pipe read file descriptor into standard input!

dup2(fds[0], STDIN_FILENO);

57

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

Redirecting Process I/O

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index.
 If the second parameter is an already-open file descriptor, it is closed before being
used.

int dup2(int oldfd, int newfd);

Example: we can use dup2 to copy the pipe read file descriptor into standard input!

dup2(fds[0], STDIN_FILENO);

Second key detail: execvp consumes the process, except for the file descriptor table!

57

Lecture Plan
Review: fork() and execvp()

Running in the background
Introducing Pipes
Practice: Implementing subprocess

58

subprocess File Descriptor Diagram
To practice this piping technique, let's implement a custom function called subprocess.

 subprocess_t subprocess(char *command);

subprocess is the same as mysystem, except it also sets up a pipe we can use to write
to the child process's STDIN.

It returns a struct containing:

the PID of the child process
a file descriptor we can use to write to the child's STDIN

59

Demo: subprocess

60

Lecture Recap
Review: fork() and execvp()

Running in the background
Introducing Pipes
Practice: Implementing subprocess

Next time: introducing signals

61

Practice Problems

62

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?
 What do each of the four files
contain?
How can we fix the issue?

63

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 dup2(outfile, STDOUT_FILENO);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3

4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?
 What do each of the four files
contain?
How can we fix the issue?

63

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 dup2(outfile, STDOUT_FILENO);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3

4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

 if (fork() > 0) return;

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?
 What do each of the four files
contain?
How can we fix the issue?

63

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 dup2(outfile, STDOUT_FILENO);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3

4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

 if (fork() > 0) return;

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

}

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?
 What do each of the four files
contain?
How can we fix the issue?

63

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 dup2(outfile, STDOUT_FILENO);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3

4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

 if (fork() > 0) return;

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

}

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

int main(int argc, char *argv[]) {

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10

11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?
 What do each of the four files
contain?
How can we fix the issue?

63

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 dup2(outfile, STDOUT_FILENO);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3

4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

 if (fork() > 0) return;

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

}

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9
 10
int main(int argc, char *argv[]) {11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

int main(int argc, char *argv[]) {

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name);2
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);3
 dup2(outfile, STDOUT_FILENO);4
 close(outfile);5
 if (fork() > 0) return;6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9
 10

11
 for (size_t i = 1; i < argc; i++) publish(argv[i]);12
 return 0;13
}14

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 if (fork() > 0) return;
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

int main(int argc, char *argv[]) {
 for (size_t i = 1; i < argc; i++) publish(argv[i]);
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

A Publishing Error

publish.c

myth62:~$./publish one two three four
Publishing date and time to file named "one".
Publishing date and time to file named "two".
Publishing date and time to file named "three".
Publishing date and time to file named "four".

1
2
3
4
5

However, the program is buggy!

What text is actually printed to
standard output?
 What do each of the four files
contain?
How can we fix the issue?

63

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.
 Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

A Publishing Error

publish.c
64

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.
 Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3

4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

A Publishing Error

publish.c
64

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.
 Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3

4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

 close(outfile);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

A Publishing Error

publish.c
64

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.
 Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3

4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

 close(outfile);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9 }

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9

A Publishing Error

publish.c
64

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.
 Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3

4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

 close(outfile);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9 }

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

A Publishing Error

publish.c
64

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.
 Solution:

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3

4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9

 close(outfile);

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5

6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8
}9 }

static void publish(const char *name) {1
 printf("Publishing date and time to file named \"%s\".\n", name); 2
 if (fork() > 0) return;3
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4
 dup2(outfile, STDOUT_FILENO);5
 close(outfile);6
 char *argv[] = { "date", NULL };7
 execvp(argv[0], argv);8

9

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

static void publish(const char *name) {
 printf("Publishing date and time to file named \"%s\".\n", name);
 if (fork() > 0) return;
 int outfile = open(name, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 dup2(outfile, STDOUT_FILENO);
 close(outfile);
 char *argv[] = { "date", NULL };
 execvp(argv[0], argv);
}

1
2
3
4
5
6
7
8
9

A Publishing Error

publish.c
64

captureProcess
Let's implement a custom function called captureProcess, like subprocess except
instead of setting up a pipe to write to the child's STDIN, it's a pipe to read from its
STDOUT.

subprocess_t captureProcess(char *command);

It returns a struct containing:

the PID of the child process
a file descriptor we can use to read from the child's STDOUT

65

captureProcess
Let's implement a custom function called captureProcess, like subprocess except
instead of setting up a pipe to write to the child's STDIN, it's a pipe to read from its
STDOUT.subprocess_t captureProcess(char *command) {

 int fds[2];
 pipe(fds);

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // We are not reading from the pipe, only writing to it
 close(fds[0]);

 // Duplicate the write end of the pipe into STDOUT
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);

 char *arguments[] = {"/bin/sh", "-c", command, NULL};
 execvp(arguments[0], arguments);
 exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);
 }

 close(fds[1]);
 return (subprocess_t) { pidOrZero, fds[0] };
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

captureProcess.c
66

