CS110 Lecture 06: Pipes, Signals, and Concurrency

Principles of Computer Systems

Winter 2021

Stanford University

Computer Science Department

Instructors: Chris Gregg and
Nick Troccoli

PDF of this presentation

https://web.stanford.edu/class/cs110/static/lectures/cs110-lecture-06-execvp-pipes-interprocess-communication.pdf

CS110 Topic 2: How can our programs
create and interact with other programs?

Learning About Processes

Creating
processes and
running other

programs

~

>

a I

Inter-process
communication

/

Lecture 5

-

>

/

This lecture

Signals

Lecture 7

Lecture 8

Learning Goals

e Get more practice with using fork() and execvp
e Learn about pipe and dup2 to create and manipulate file descriptors
e Use pipes to redirect process input and output

Lecture Plan

Review: fork() and execvp()

e Running in the background
Introducing Pipes

Practice: Implementing subprocess

fork ()

o A system call that creates a new child process

e The "parent” is the process that creates the other "child" process
 From then on, both processes are running the code after the fork
e The child process is identical to the parent, except:

= it has a new Process ID (PID)
= for the parent, fork() returns the PID of the child; for the child, fork() returns O
= fork() is called once, but returns twice

pidOrZero = fork();

1
2
3

printf("This is printed by two processes.\n");

waitpid ()

A function that a parent can call to wait for its child to exit:

waitpid(pid, *status, options);

e pid: the PID of the child to wait on, or -1 to wait on any of our children
e status: where to put info about the child's termination (or NULL)
e options: optional flags to customize behavior (always 0 for now)

The function returns when the specified child process exits.

e the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait

on)
* If the child process has already exited, this returns immediately - otherwise, it blocks ==,
e |t's important to wait on all children to clean up system resources

execvp ()

execvp is a function that lets us run another program in the current process.

execvp (*path, *argv([]);

It runs the executable at the specified path, completely cannibalizing the current
process.

 If successful, execvp never returns in the calling process
e |f unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

e For our programs, path and argv[0] will be the same

execvp has many variants (execle, execlp, and so forth. Type man execvp for
more). We rely on execvp in CS110.

Revisiting mysystem
mysystem is our own version of the built-in function system.
e |t takes in a terminal command (e.g. "Is -l /usr/class/cs110"), executes it in a

separate process, and returns when that process is finished.

= \We can use fork to create the child process
= \We can use execvp in that child process to execute the terminal command
= \We can use waitpid in the parent process to wait for the child to terminate

Revisiting mysystem

mysystem(*command) {
pidOrZero = fork();
(pidOrZero == 0) {
*arguments[] = {"/bin/sh", "-c", command,
execvp (arguments[0], arguments);

exitIf(, kExecFailed, stderr, "execvp failed to invoke this:

1
2
K
4
5
6
7
8
9

status;
waitpid(pidOrZero, &status, 0);
WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);

first-shell-soln.c

$s.\n", command);

10

Revisiting first-shell

main (argc, *argv([]) {
command [kMaxLineLength];
() {
printf ("> ");
fgets (command, (command), stdin);

ONOULIBWDN R

(feof (stdin)) {

4

command[strlen(command) - 1] = '\0';

commandReturnCode = mysystem(command) ;
printf ("return code = %d\n", commandReturnCode);

}

printf("\n");
0;

Our first-shell program is a loop in main that
first-shell-soln.c parses the user input and passes it to

mvsvstem.

first-shell [akeaways

e A shell is a program that repeats: read command from the user, execute that
command

In order to execute a program and continue running the shell afterwards, we fork off
another process and run the program in that process

e We rely on fork, execvp, and waitpid to do this!

Real shells have more advanced functionality that we will add going forward.

For your fourth assignment, you'll build on this with your own shell, stsh ("Stanford
shell") with much of the functionality of real Unix shells.

12

More Shell Functionality

Shells have a variety of supported commands:

e emacs & - create an emacs process and run it in the background
e cat file.txt | uniq | sort - pipe the output of one command to the input of another

e uniq < file.txt | sort > list.txt - make file.txt the input of unig and output sort to list.txt
e Let's see how we can implement these - but first, a demo.

13

Lecture Plan

Review: fork() and execvp()

e Running in the background
Introducing Pipes

Practice: Implementing subprocess

14

Supporting Background Execution

Let's make an updated version of mysystem called executeCommand.

Supporting Background Execution

Let's make an updated version of mysystem called executeCommand.

e Takes an additional parameter bool inBackground

» |f false, same behavior as mysystem (spawn child, execvp, wait for child)
= |f true, spawn child, execvp, but don't wait for child

15

Supporting Background Execution

executeCommand (*command, inBackground) {
pidOrZero = fork();
(pidOrZero == 0) {
*arguments[] = {"/bin/sh", "-c¢", command,
execvp(arguments[0], arguments);

OO WDN R

exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

(inBackground) {
printf("%d %s\n", pidOrZero, command);

{
waitpid(pidOrZero,

second-shell-start.c

16

Supporting Background Execution

(*command, inBackground) {
pidOrZero = fork();
(pidOrZero == 0) {

*arguments[] = {"/bin/sh", "-c¢", command, };
execvp(arguments[0], arguments);

exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

(inBackground) {
printf("%d %s\n", pidOrZero, command);

{
waitpid(pidOrZero, , 0);

second-shell-start.c

17

Supporting Background Execution

executeCommand (*command, inBackground) {
pidOrZero = fork();
(pidOrZero == 0) {

*arguments[] = {"/bin/sh", "-c¢", command, };
execvp(arguments[0], arguments);

exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

1
2
3
4
5
6
7
8
9
0]

1

(inBackground) {
(, pidOrZero, command);

{
waitpid(pidOrZero, , 0);

Lines 11-16: The parent waits on a foreground child, but not a background
child.
second-shell-start.c

18

Supporting Background Execution

main (argc, *argv[]) {

command [kMaxLineLength] ; Ir] rT1Eiir1, \A/EB rT1lJE;t Ei(j(j t\A/() Ei(j(jitiC)r1Eil tr]ir1£355:

() {
printf ("> ");

fgets (command, (command) , stdin); e Check for the "quit" command to exit

(feof (stdin)) { e Allow the user to add "&" at the end of a
} ; command to run that command in the
comnand[strlen(command) — 1] = '\0'; background

(stremp(command, "quit’) = 0) ; Note that a background child isn't reaped!

isbg = command[strlen(command) - 1] == '&';

(isbg) { This is a problem - one we'll learn how to fix

command[strlen(command) - 1] = '\0';

' soon.

executeCommand (command, isbg);

ONOUTLdWN K

}

printf("\n");
0;

second-shell-start.c

19

Supporting Background Execution

ONOUTLdWN K

main (argc, *argv[]) {
command [kMaxLineLength] ;
() {
printf ("> ");

fgets (command, (command), stdin);

(feof (stdin)) {

}

command[strlen(command) - 1] = '\0';
(c+rﬂmn(command, "n"-i-l-") == 0)

isbg = command|[

(isbg) {
command [(command) - 1] =

}

(command) - 1]

executeCommand (command, isbg);

}

printf("\n");
0;

In main, we must add two additional things:

e Check for the "quit" command to exit

e Allow the user to add "&" at the end of a
command to run that command in the
background

Note that a background child isn't reaped!
This is a problem - one we'll learn how to fix
soon.

second-shell-start.c

19

Lecture Plan

Review: fork() and execvp()

e Running in the background
Introducing Pipes

Practice: Implementing subprocess

20

Lecture Plan

e Review: fork() and execvp()
e Running in the background
e Introducing Pipes
= \What are pipes?
= Pipes between processes
= Redirecting process 1/O

e Practice: Implementing subprocess

21

|s there a way that the parent and
child processes can communicate?

Interprocess Communication

e It's useful for a parent process to communicate with its child (and vice versa)
e There are two key ways we will learn to do this: pipes and signals

= Pipes let two processes send and receive arbitrary data
= Signals let two processes send and receive certain "signals" that indicate
something special has happened.

23

Interprocess Communication

e It's useful for a parent process to communicate with its child (and vice versa)
e There are two key ways we will learn to do this: pipes and signals

= Pipes let two processes send and receive arbitrary data
= Signals let two processes send and receive certain "signals" that indicate
something special has happened.

24

Pipes

25

Pipes

 How can we let two processes send arbitrary data back and forth?

25

Pipes

 How can we let two processes send arbitrary data back and forth?
e A core Unix principle is modeling things as files. Could we use a "file"?

25

Pipes

 How can we let two processes send arbitrary data back and forth?
e A core Unix principle is modeling things as files. Could we use a "file"?
 Idea: a file that one process could write, and another process could read?

25

Pipes

 How can we let two processes send arbitrary data back and forth?

A core Unix principle is modeling things as files. Could we use a "file"?

Idea: a file that one process could write, and another process could read?

e Problem: we don't want to clutter the filesystem with actual files every time two
processes want to communicate.

25

Pipes

 How can we let two processes send arbitrary data back and forth?

e A core Unix principle is modeling things as files. Could we use a "file"?

 Idea: a file that one process could write, and another process could read?

e Problem: we don't want to clutter the filesystem with actual files every time two
processes want to communicate.

e Solution: have the operating system set this up for us.

= |t will give us two new file descriptors - one for writing, another for reading.
= |f someone writes data to the write FD, it can be read from the read FD.
» |t's not actually a physical file on disk - we are just using files as an abstraction

25

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

26

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

* kPipeMessage = "Hello, this message is coming through a pipe.";
main (argc, *argv[]) {
fds[2];
result = pipe(fds);

write(fds[1l], kPipeMessage, strlen(kPipeMessage) + 1);
close(fds[1]);

oYU bWN K

Tip: you learn to read before
receivedMessage[strlen(kPipeMessage) + 1]; .
read(fds[0], receivedMessage, (receivedMessage)) ; you Iearn to W”te (read =

close(£fds[0]);

printf ("Message read: %s\n", receivedMessage); de[O], erte = de[1])

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

fds[2];

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

pipe-demo.c

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

result = pipe(£fds);

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

pipe-demo.c

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

pipe-demo.c

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

close(fds[1]);

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

pipe-demo.c

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

Tip: you learn to read before
read(fds[0], receivedMessage, (receivedMessage)) ; you Iearn to W”te (read -
fds[0], write = fds[1]).

pipe-demo.c

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

Tip: you learn to read before
you learn to write (read =
fds[0], write = fds[1]).

close(fds[0]);

pipe-demo.c

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

* kPipeMessage = "Hello, this message is coming through a pipe.";
main (argc, *argv[]) {
fds[2];
result = pipe(fds);

write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
close(fds[1]);

Tip: you learn to read before
receivedMessage[strlen(kPipeMessage) + 1]; .
read(fds[0], receivedMessage, (receivedMessage)) ; you Iearn to W”te (read -

close(fds[0]);

printf ("Message read: %s\n", receivedMessage); de[O], erte = de[1])

27

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

* kPipeMessage = "Hello, this message is coming through a pipe.";
main (argc, *argv[]) {
fds[2];
result = pipe(fds);

write(fds[1l], kPipeMessage, strlen(kPipeMessage) + 1);
close(fds[1]);

oYU bWN K

Tip: you learn to read before
receivedMessage[strlen(kPipeMessage) + 1]; .
read(fds[0], receivedMessage, (receivedMessage)) ; you Iearn to W”te (read =

close(£fds[0]);

printf ("Message read: %s\n", receivedMessage); de[O], erte = de[1])

1 $./pipe-demo
2 Message read: Hello, this message is coming through a pipe.

28

Lecture Plan

e Review: fork() and execvp()
e Running in the background
e Introducing Pipes
= \What are pipes?
= Pipes between processes
= Redirecting process /O

e Practice: Implementing subprocess

29

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

pipe can allow processes to communicate!

30

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

pipe can allow processes to communicate!

e The parent's file descriptor table is replicated in the child - both have pipe access

30

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

pipe can allow processes to communicate!

e The parent's file descriptor table is replicated in the child - both have pipe access

e E.g. the parent can write to the "write" end and the child can read from the "read"
end

30

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

pipe can allow processes to communicate!

e The parent's file descriptor table is replicated in the child - both have pipe access

e E.g. the parent can write to the "write" end and the child can read from the "read"
end

 Because they're file descriptors, there's no global name for the pipe (another
process can't "connect" to the pipe).

30

pipe()

pipe (fds[]);

The pipe system call populates the 2-element array fds with two file descriptors such that
everything written to £ds[1]can be read from £ds[0]. Returns 0 on success, or -1 on error.

pipe can allow processes to communicate!

e The parent's file descriptor table is replicated in the child - both have pipe access

e E.g. the parent can write to the "write" end and the child can read from the "read"
end

 Because they're file descriptors, there's no global name for the pipe (another
process can't "connect" to the pipe).

e Each pipe is uni-directional (one end is read, the other write)

30

* kPipeMessage = "Hello, this message is coming through a pipe."; Here‘s an example program
main (argc, *argv[]) { . .
1t £ds[2]; showing how pipe works
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1; across processes (fU”

program link at bottom).

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

read(fds[0], buffer, (buffer));

close(fds[0]);

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, , 0);

0;

parent-child-pipe.c

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

main (argc, *argv[]) {
fds[2];

pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

read(fds[0], buffer, (buffer));

close(fds[0]);

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero,

0;

parent-child-pipe.c

Make a pipe just like
before.

32

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";
main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];
read(fds[0], buffer, (buffer));
close(fds[0]);
printf ("Message from parent: %s\n", buffer);
0;

The parent must close all
close(£ds[0]); its open FDs. It never uses
write(fds[l],,kPipeMessage, bytesSent); the Read FD SO wWe can

close(fds[1]); .
waitpid(pidOrzero, r 0); close it here.
0;

33

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

read(fds[0], buffer, (buffer));

close(fds[0]);

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);
write(fds[1l], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero,

0;

parent-child-pipe.c

Write to the Write FD to
send a message to the
child.

34

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

read(fds[0], buffer, (buffer));

close(fds[0]);

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero,

0;

parent-child-pipe.c

We are now done with the
Write FD so we can close it

here.

35

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

read(fds[0], buffer, (buffer));

close(fds[0]);

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);

close(fds[1]);
waitpid(pidOrZero, r 0);
0;

parent-child-pipe.c

We wait for the child to
terminate.

36

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";
main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];
read(fds[0], buffer, (buffer));
close(fds[0]);
printf ("Message from parent: %s\n", buffer);
0;

close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, , 0);
0;

parent-child-pipe.c

Key Idea: when we call
fork, the child gets a copy
of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

37

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

More specifically, this

main (argc, *argv([]) {
ety duplication means the
bytesSent = strlen(kPipeMessage) + 1; child's file descriptor table
T entries point to the same
close (£ds[1]); open file table entries as the
B i N parent. Thus, the open file
e e i e Gy T, table entries for the two pipe
07 FDs both have reference
counts of 2.

close(fds[0]);

write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);

waitpid(pidOrZero, , 0);

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";
main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

‘pidorzero = fork(); The child must close all its
(pidOrZero == 0) {
open FDs. It never uses
close(fds[1]); .
buffer[bytessent]; the Write FD so we can
read(fds[0], buffer, (buffer)); .
close(fds[0]); ClOse |t here

printf ("Message from parent: %s\n", buffer);
0;

close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero,
0;

parent-child-pipe.c

39

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

read (fds[0], buffer, (buffer));

close(fds[0]);

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);
write(fds[1l], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero,

0;

parent-child-pipe.c

Read from the Read FD to
read the message from the
parent.

40

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe.";

main (argc, *argv[]) {
fds[2];
pipe(fds);
bytesSent = strlen(kPipeMessage)

pidOrZero = fork();
(pidOrZero == 0) {

close(fds[1]);
buffer[bytesSent];

+ 1;

read(fds[0], buffer, (buffer));

close(fds[0]);

('
0;

close(fds[0]);
write(fds[1l], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, , 0);
0;

parent-child-pipe.c

buffer);

We are now done with the
Read FD so we can close it
here. Also print the
received message.

41

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage
main (argc, *argv[]) {

fds[2];
pipe(fds);

"Hello, this message is coming through a pipe.";

bytesSent = strlen(kPipeMessage) + 1;

pidOrZero = fork();

(pidOrZero == 0) {

close(fds[1]);

buffer[bytesSent];
read(fds[0], buffer,

close(fds[0]);

(buffer));

printf ("Message from parent: %s\n", buffer);

0;

close(fds[0]);

write(fds[1], kPipeMessage, bytesSent);

close(fds[1]);
waitpid(pidOrZero,

14

0);

Key Idea: the child gets a
copy of the parent's file
descriptor table. Any open
FDs in the parent at the
time fork is called must be
closed in both the parent
and the child.

42

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe."; Key Idea the Chlld gets &l

main (argc, *argv[]) {
bivectans) copy of the parent's file
byéesSent = strlen(kPipeMessage) + 1; descriptor table. Any open
‘pidorzero = fork(); FDs in the parent at the
(pidorzero == 0) { . ;
time fork is called must be
close(fds[1]); .
buffer[bytesSent]; closed in both the parent
read(fds[0], buffer, (buffer)); ,
close(£ds[0]); and the child.
printf ("Message from parent: %s\n", buffer);
o Here, right before the
fork call, the parent has 2
close(fds[0]); - .
write(fds[1], kPipeMessage, bytesSent); Open flle descrlptors
1 (fds[1]); i . i
:vazis::id(:idOrZero, , 0); (beSIdeS 0-2) the plpe

Read FD and Write EDg.,

42

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe."; Key Idea the Chlld gets el

main (argc, *argv[]) {
£ds[2]; 'S fj
bive (] copy of the parent's file
bytesSent = strlen(kPipeMessage) + 1; deSC”ptOr table Any Open
‘pidorzero = fork(); FDs in the parent at the
(pidorzero == 0) { . ;
time fork is called must be
close(fds[1]); i
buffer[bytesSent]; closed in both the parent
read(fds[0], buffer, (buffer)); .
close(£ds[0]); and the child.

printf ("Message from parent: %s\n", buffer);
0;

Therefore, when the child is
spawned, it also has the

:nl:(i):gg:{g}Z;kpipeMessage, bytesSent) ; same 2 open file

el A ey e (O descriptors (besides 0-2):
the pipe Read FD an
Write FD. S R

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe."; Key Idea the Chlld gets el

main (argc, *argv[]) {
1t £ds[2]; copy of the parent's file
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1; deSC”ptOr table Any Open
‘pidorzero = fork(); FDs in the parent at the
(pidorzero == 0) { . ;
time fork is called must be
close(fds[1]); i
buffer[bytesSent]; closed in both the parent
read(fds[0], buffer, (buffer)); .
close(£ds[0]); and the child.

printf ("Message from parent: %s\n", buffer);
0;

lose (£d5[0]) ; We should close FDs when
write(fds[l],,kPipeMessage, bytesSent); we are done W|th them
close(fds[1]);

waitpid(pidOrzero, , 0); The parent closes them
here. TN

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

* kPipeMessage = "Hello, this message is coming through a pipe."; Key Idea the Chlld gets el

main (argc, *argv[]) {
1t £ds[2]; copy of the parent's file
pipe(fds);
bytesSent = strlen(kPipeMessage) + 1; deSC”ptOr table Any Open
‘pidorzero = fork(); FDs in the parent at the
(pidorzero == 0) { . ;
time fork is called must be
close(fds[1]); }
buffer[bytesSent]; closed in both the parent
read(fds[0], buffer, (buffer)); .
close(fds[0]); and the Chlld

printf ("Message from parent: %s\n", buffer);
0;

We should close FDs when
close(fds[0]);
write(fds[1l], kPipeMessage, bytesSent); we are done with them.
close(fds[1]);

waitpid(pidOrzero, , 0); The child closes them
here.

45

http://web.stanford.edu/class/cs110/lecture-examples/processes/parent-child-pipe.c

Trying Out Pipes

https://cplayground.com/?p=eagle-fish-mouse

Pipes

This method of communication between processes relies on the fact that file descriptors are
duplicated when forking.

e each process has its own copy of both file descriptors for the pipe
e both processes could read or write to the pipe if they wanted.
e each process must therefore close both file descriptors for the pipe when finished

This is the core idea behind how a shell can support piping between processes
(e.g. cat file.txt | uniq | sort). Let's see how this works in a shell.

47

Lecture Plan

e Review: fork() and execvp()
e Running in the background
e Introducing Pipes
= \What are pipes?
= Pipes between processes
= Redirecting process /O

e Practice: Implementing subprocess

48

Redirecting Process 1/0

e Each process has the special file descriptors STDIN (0), STDOUT (1) and STDERR
(2)

* Processes assume these indexes are for these methods of communication (e.g.
p6intf alwqys outpLgs to file gescriptor 1, STDOUT).

Terminal

Idea: what happens if we change FD 1 to point somewhere else?

49

Redirecting Process 1/0

Idea: what happens if we change FD 1 to point somewhere else?

main() {
printf ("This will print to the terminalln");
close (STDOUT FILENO); 0]

fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

printf ("This will print to myfile.txt!\n");
close(fd);
0;

1
y)
3
4
5
6
7
8
9
10
11 }

Terminal

50

Redirecting Process 1/0

Idea: what happens if we change FD 1 to point somewhere else?

main() {
printf ("This will print to the terminalln");
close (STDOUT FILENO); 0] 1 2

fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

printf ("This will print to myfile.txt!\n");
close(fd);
0;

Terminal

Redirecting Process 1/0

Idea: what happens if we change FD 1 to point somewhere else?

main() {
printf ("This will print to the terminalln");
close (STDOUT FILENO); 0]

fd = open(, O_WRONLY | O_CREAT | O_TRUNC, 0644);

printf ("This will print to myfile.txt!\n");
close(fd);

Terminal

52

Redirecting Process 1/0

Idea: what happens if we change FD 1 to point somewhere else?

main() {
printf ("This will print to the terminalln");
close (STDOUT FILENO); 0]

fd = open("myfile.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);

()i
close(fd);
0;

Terminal

53

Redirecting Process 1/0

Idea: what happens if we change a special FD to point somewhere else?

Could we do this with a pipe?

Process 1 Process 2
0 1 2 0 1 2
: pipe pipe
{Term'”a' READ I WRITE

Why would this be useful?

54

Redirecting Process 1/0

/O redirection and pipes allow us to handle piping_in our shell: e.g. cat file.txt | sort

at sort

0] 1 2 0] 1 2

[Terminal

pipe pipe
READ | WRITE

55

Redirecting Process 1/0

/O redirection and pipes allow us to handle piping_in our shell: e.g. cat file.txt | sort | uniq

o Shell creates three child processes: cat, unig and sort

e Shell creates two pipes: one between cat and sort, one between sort and uniq

pipe

j —mp— Q=) (s \

terminal in

int pipel[2];
int pipe2[2];
pipe(pipel);
pipe(pipe2);

pipe2

Process |[stdin stdout

cat terminal |pipe1[1]
sort pipe1[0] |pipe2[1]
uniq pipe2[0] [terminal

terminal out

56

Redirecting Process 1/0

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

57

Redirecting Process 1/0

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index.
If the second parameter is an already-open file descriptor, it is closed before being

used.
dup2 (oldfd, newfd) ;

57

Redirecting Process 1/0

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index.
If the second parameter is an already-open file descriptor, it is closed before being

used.
dup2 (oldfd, newfd) ;

Example: we can use dup2 to copy the pipe read file descriptor into standard input!

dup2 (£ds[0], STDIN FILENO);

57

Redirecting Process 1/0

One last issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor index.
If the second parameter is an already-open file descriptor, it is closed before being

used.
dup2 (oldfd, newfd) ;

Example: we can use dup2 to copy the pipe read file descriptor into standard input!

dup2 (£ds[0], STDIN FILENO);

57

Lecture Plan

Review: fork() and execvp()

e Running in the background
Introducing Pipes

Practice: Implementing subprocess

58

subprocess File Descriptor Diagram

To practice this piping technique, let's implement a custom function called subprocess.

subprocess (*command) ;

subprocess is the same as mysystem, except it also sets up a pipe we can use to write
to the child process's STDIN.

It returns a struct containing:

e the PID of the child process
* a file descriptor we can use to write to the child's STDIN

59

Demo: subprocess

Lecture Recap

e Review: fork() and execvp()

e Running in the background

e Introducing Pipes

 Practice: Implementing subprocess

Next time: introducing signals

61

Practice Problems

A Publishing Error

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

myth62:~$./publish one two three four

Publishing date and time to file named "
Publishing date and time to file named "
Publishing date and time to file named "

publish(*name) {
printf ("Publishing date and time to file named \"%s\".\n", name);
outfile = open(name, O _WRONLY | O _CREAT | O_TRUNC, 0644);
dup2 (outfile, STDOUT_FILENO) ;
close(outfile);
fork >0 . .
S mrovls = ¢ "astor. . However, the program is buggy!

execvp(argv[0], argv);

1
2
3
4 Publishing date and time to file named "
5
6
7
8

e What text is actually printed to

main(int arge, rargv(]) { standard output?

 What do each of the four files
contain?

i=1; i < argc; i++) publish(argv[i]);

63

A Publishing Error

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

myth62:~$./publish one two three four
Publishing date and time to file named "
Publishing date and time to file named "

Publishing date and time to file named "

dup2 (outfile, STDOUT_FILENO); Publishing date and time to file named "

However, the program is buggy!

e What text is actually printed to
standard output?

 \What do each of the four files
contain?

e How can we fix the issue? ___

== 0 =N
bt b N
4 e =0 =)

publish.c

63

A Publishing Error

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

myth62:~$./publish one two three four
Publishing date and time to file named "
Publishing date and time to file named "

Publishing date and time to file named "
Publishing date and time to file named "

(fork() > 0)

However, the program is buggy!

e What text is actually printed to
standard output?

 \What do each of the four files
contain?

e How can we fix the issue? ___

== 0 =N
bt b N
4 e =0 =)

publish.c

63

A Publishing Error

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

myth62:~$./publish one two three four
Publishing date and time to file named "
Publishing date and time to file named "

Publishing date and time to file named "
Publishing date and time to file named "

However, the program is buggy!

e What text is actually printed to
standard output?

 \What do each of the four files
contain?

e How can we fix the issue? ___

== 0 =N
bt b N
4 e =0 =)

publish.c

63

A Publishing Error

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

myth62:~$./publish one two three four
Publishing date and time to file named "
Publishing date and time to file named "

Publishing date and time to file named "
Publishing date and time to file named "

However, the program is buggy!

e What text is actually printed to

rargv(]) { standard output?

 \What do each of the four files
contain?

e How can we fix the issue? __.

== 0 =N
bt b N
4 e =0 =)

publish.c

63

A Publishing Error

The program below takes an arbitrary number of filenames as arguments and attempts to
publish the date and time. The desired behavior is shown at right:

myth62:~$./publish one two three four
Publishing date and time to file named "
Publishing date and time to file named "

publish(*name) {
printf ("Publishing date and time to file named \"%s\".\n", name);
outfile = open(name, O _WRONLY | O_CREAT | O_TRUNC, 0644);
dup2 (outfile, STDOUT FILENO);
close(outfile);
fork >0 - .
rovls = ¢ "astor. . However, the program is buggy!

execvp(argv[0], argv);

Publishing date and time to file named "

1
2
3
4 Publishing date and time to file named "
5
6
7
8

e What text is actually printed to

main(int arge, rargv(]) { standard output?

 \What do each of the four files
contain?

i =1; i < argc; i++) publish(argv[i]);

63

A Publishing Error

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.

publish(*name) {
printf ("Publishing date and time to file named \"%s\".\n", name);
(fork() > 0) ;
outfile = open(name, O WRONLY | O _CREAT | O _TRUNC, 0644);
dup2 (outfile, STDOUT_FILENO);

close(outfile);
*argv[] = { "date" ’ };
execvp(argv[0], argv);

OW 00O NGOV b WDN K=

publish.c

64

A Publishing Error

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.

outfile = open(name, O _WRONLY | O CREAT | O_TRUNC, 0644);

publish.c

64

A Publishing Error

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.

close(outfile);

publish.c

64

A Publishing Error

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.

publish.c

64

A Publishing Error

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.

publish(*name) {
printf ("Publishing date and time to file named \"%s\".\n", name);
(fork() > 0) ;
outfile = open(name, O _WRONLY | O CREAT | O_TRUNC, 0644);
dup2 (outfile, STDOUT_ FILENO);

close(outfile);
*argv[] = { "date" ’ } 7
execvp(argv[0], argv);

OW 00NV WDN M

publish.c

64

A Publishing Error

Because the child processes (and only the child processes) should be redirecting, we should
open, dup2, and close in child-specific code. A happy side effect of the change is that we never
muck with STDOUT_FILENO in the parent if we confine the redirection code to the child.

publish(*name) {
printf ("Publishing date and time to file named \"%s\".\n", name);
(fork() > 0) ;
outfile = open(name, O _WRONLY | O CREAT | O_TRUNC, 0644);
dup2 (outfile, STDOUT_ FILENO);

close(outfile);
*argv[] = { "date" ’ } 7
execvp(argv[0], argv);

OW 00NV WDN M

publish.c

64

captureProcess

Let's implement a custom function called captureProcess, like subprocess except
instead of setting up a pipe to write to the child's STDIN, it's a pipe to read from its

STDOUT.

It returns a struct containing:

e the PID of the child process
e a file descriptor we can use to read from the child's STDOUT

65

captureProcess

Let's implement a custom function called captureProcess, like subprocess except
instead of setting up a pipe to write to the child's STDIN, it's a pipe to read from its

captureProcess (*command) {
fds[2];
pipe(fds);

pidorZero = fork();
(pidOrZero == 0) {

1
2
3
4
5
6
7
8

close(fds[0]);

dup2(fds[1], STDOUT FILENO);
close(fds[1]);

*arguments[] = {"/bin/sh", "-c", command, };
execvp (arguments[0], arguments);
exitIf(, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

}

close(fds[1]);
) { pidOrZero, £ds[0] };

captureProcess.c

66

