
CS110 Lecture 08: Concurrency and Race Conditions

Principles of Computer Systems

Winter 2021

Stanford University

Computer Science Department

Instructors: Chris Gregg and

 Nick Troccoli

https://comic.browserling.com/53

1

CS110 Topic 2: How can our programs
create and interact with other programs?

2

Learning About Processes

Creating
processes and
running other

programs

Inter-process
communication

Signals
Concurrency and
Race Conditions

Lecture 5 Lecture 6 Lecture 7 Today

3

Today's Learning Goals
Understand what a race condition is and how they can cause problems in programs

Learn about the race condition checklist for identifying and avoiding race conditions

Learn more about sigsuspend and how it helps us avoid race conditions

4

Plan For Today
Recap: Signals

Race Conditions and Atomicity

Revisiting sigsuspend

More Practice: Race Conditions

5

Plan For Today
Recap: Signals

Race Conditions and Atomicity

Revisiting sigsuspend

More Practice: Race Conditions

6

Signals
A signal is a way to notify a process that an event has occurred

There is a list of defined signals that can be sent (or you can define your own): SIGINT,

SIGSTOP, SIGKILL, SIGCONT, etc.

A signal is really a number (e.g. SIGSEGV is 11)

A program can have a function executed when a type of signal is received

Signals are sent either by the operating system, or by another process

e.g. SIGCHLD sent by OS to parent when child changes state

You can send a signal to yourself or to another process you own

7

Sending Signals
The operating system sends many signals, but we can also send signals manually.

kill sends the specified signal to the specified process (poorly-named; previously,

default was to just terminate target process)

pid parameter can be > 0 (specify single pid), < -1 (specify process group abs(pid)), or

0/-1 (we ignore these).

raise sends the specified signal to yourself

int kill(pid_t pid, int signum);

// same as kill(getpid(), signum)
int raise(int signum);

8

waitpid()
Waitpid can be used to wait on children to terminate or change state:

pid_t waitpid(pid_t pid, int *status, int options);

pid: the PID of the child to wait on, or -1 to wait on any of our children
status: where to put info about the child's status (or NULL)
the return value is the PID of the child that was waited on, -1 on error, or 0 if there are
other children to wait for, but we are not blocking.

The default behavior is to wait for the specified child process to exit. options lets us
customize this further (can combine these flags using |):

WUNTRACED - also wait on a child to be stopped
WCONTINUED - also wait on a child to be continued
WNOHANG - don't block

9

Signal Handlers
We can have a function of our choice execute when a certain signal is received.

We must register this "signal handler" with the operating system, and then it will be

called for us.

signum is the signal (e.g. SIGCHLD) we are interested in.

handler is a function pointer for the function to call when this signal is received.

(Note: no handlers allowed for SIGSTOP or SIGKILL)

typedef void (*sighandler_t)(int);
...
sighandler_t signal(int signum, sighandler_t handler);

10

Signal Handlers
A signal can be received at any time, and a signal handler can execute at any time.

Signals aren't handled immediately (there can be delays)

Signal handlers can execute at any point during the program execution (eg. pause

main() execution, execute handler, resume main() execution)

Goal: keep signal handlers simple!

Similar to hardware interrupts -- POSIX brings that model to software

11

Signal Handlers
Key Idea: a signal handler is called if one or more signals of a type are sent.

Like a notification that "one or more signals of this type are waiting for you!"

The kernel tracks only what signals should be sent to you, not how many

Solution: signal handler should clean up as many children as possible, using WNOHANG,

which means don't block. If there are children we would have waited on but aren't, returns

0. -1 typically means no children left.

static void reapChild(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 numDone++;
 }
}

1
2
3
4
5
6
7

12

Do Not Disturb
The sigprocmask function lets us temporarily block signals of the specified types. Instead,

they will be delivered when the block is removed.

To add signals to the blocked list, how = SIG_BLOCK, set points to the signals to add

To remove signals from the blocked list, how = SIG_UNBLOCK, set points to the

signals to remove

To set the whole blocked list, how = SIG_SETMASK, set is the location of the new

blocked list

In all cases, oldset is where to store the old blocked list (or NULL).

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

13

Do Not Disturb
sigset_t is a special type (usually a 32-bit int) used as a bit vector. It must be created and

initialized using special functions (we generally ignore the return values).

// Initialize to the empty set of signals
int sigemptyset(sigset_t *set);

// Set to contain all signals
int sigfillset(sigset_t *set);

// Add the specified signal
int sigaddset(sigset_t *set, int signum);

// Remove the specified signal
int sigdelset(sigset_t *set, int signum);

static void imposeSIGCHLDBlock() {
 sigset_t set;
 sigemptyset(&set);
 sigaddset(&set, SIGCHLD);
 sigprocmask(SIG_BLOCK, &set, NULL);
}

14

Plan For Today
Recap: Signals

Race Conditions and Atomicity

Revisiting sigsuspend

More Practice: Race Conditions

15

Concurrency
Concurrency means performing multiple actions at the same time.

Concurrency is extremely powerful: it can make your systems faster, more responsive,

and more efficient. It's fundamental to all modern software.

 When you introduce multiprocessing (e.g. fork) and asynchronous signal handling

(e.g. signal), it's possible to have concurrency issues. These are tricky!

Most challenges come with shared data - e.g. two routines using the same variable.

Many large systems parallelize computations by trying to eliminate shared data - e.g.

split the data into independent chunks and process in parallel.

A race condition is an unpredictable ordering of events (due to e.g. OS scheduling)

where some orderings may cause undesired behavior.

16

Off To The Races
// job-list-broken.c
static void reapProcesses(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 printf("Job %d removed from job list.\n", pid);
 }
}

char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 for (size_t i = 0; i < 3; i++) {
 pid_t pid = fork();
 if (pid == 0) execvp(kArguments[0], kArguments);
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

myth60$./job-list-broken
Sun Jan 27 03:57:30 PDT 2019
Job 27981 removed from job list.
Job 27981 added to job list.
Sun Jan 27 03:57:31 PDT 2019
Job 27982 removed from job list.
Job 27982 added to job list.
Sun Jan 27 03:57:32 PDT 2019
Job 27985 removed from job list.
Job 27985 added to job list.
myth60$./job-list-broken
Sun Jan 27 03:59:33 PDT 2019
Job 28380 removed from job list.
Job 28380 added to job list.
Sun Jan 27 03:59:34 PDT 2019
Job 28381 removed from job list.
Job 28381 added to job list.
Sun Jan 27 03:59:35 PDT 2019
Job 28382 removed from job list.
Job 28382 added to job list.
myth60$

Symptom: it looks like jobs are being removed from the list before being

added! How is this possible?

17

Off To The Races
// job-list-broken.c
static void reapProcesses(int sig) {
 while (true) {
 pid_t pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 printf("Job %d removed from job list.\n", pid);
 }
}

char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 for (size_t i = 0; i < 3; i++) {
 pid_t pid = fork();
 if (pid == 0) execvp(kArguments[0], kArguments);
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Issue: the signal handler is being called

before the parent adds to the job list.

Solution: block SIGCHLD from lines

14-17 to force the parent to always

add to the job list first.

This is called a critical section - a piece

of code that is indivisible. It cannot be

interrupted midway by our other code.

block

unblock

18

// job-list-fixed.c
char * const kArguments[] = {"date", NULL};
int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);

 // Create set with just SIGCHLD
 sigset_t set;
 sigemptyset(&set);
 sigaddset(&set, SIGCHLD);

 for (size_t i = 0; i < 3; i++) {
 sigprocmask(SIG_BLOCK, &set, NULL);
 pid_t pid = fork();
 if (pid == 0) {
 sigprocmask(SIG_UNBLOCK, &set, NULL);
 execvp(kArguments[0], kArguments);
 }
 sleep(1); // force parent off CPU
 printf("Job %d added to job list.\n", pid);
 sigprocmask(SIG_UNBLOCK, &set, NULL);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Off To The Races
This is called a critical section - a piece

of code that is indivisible. It cannot be

interrupted midway by our other code.

If something is atomic, it means it

cannot be interrupted by something

else.

Code that executes while a signal is

blocked is atomic with respect to that
signal's handler - the handler executes

before or after the code, but never

during.

19

Race Conditions and Concurrency
Race conditions are a fundamental problem in concurrent code.

Decades of research in how to detect and deal with them

They can corrupt your data and violate its integrity, so it is no longer consistent

Critical sections can prevent race conditions, but there are two major challenges

Figuring out where to put critical sections

E.g. You have a global linked list. A signal handler prints out the list. Your main

code inserts and deletes from the list. You need to make sure every update to

the list executes atomically, so a signal handler never sees a bad pointer.

Structuring your code so critical sections don't limit performance

E.g. if your code spends most of its time in critical sections, then signals may be

delayed for a long time (making your program less responsive).
20

The Race Condition Checklist
☐ Identify shared data that may be modified concurrently. What global variables are

used in both the main code and signal handlers?

☐ Document and confirm an ordering of events that causes unexpected behavior.

 What assumptions are made in the code that can be broken by certain orderings?

☐ Use concurrency directives to force expected orderings. How can we use signal

blocking and atomic operations to force the correct ordering(s)?

21

Plan For Today
Recap: Signals

Race Conditions and Atomicity

Revisiting sigsuspend

More Practice: Race Conditions

22

// simplesh

// The currently-running foreground command PID
static pid_t foregroundPID = 0;

static void waitForForegroundProcess(pid_t pid) {
 fgpid = pid;
 sigset_t empty;
 sigemptyset(&empty);
 while (fgpid == pid) {
 sigsuspend(&empty);
 }
}

static void executeCommand(char *command, bool inBackground) {
 // ...(omitted for brevity)...
 if (inBackground) {
 printf("%d %s\n", pidOrZero, command);
 } else {
 waitForForegroundCommand(pidOrZero);
 }
}

static void reapProcesses(int signum) {
 while (true) {
 pid_t result = waitpid(-1, NULL, WNOHANG);
 if (result <= 0) break;
 if (result == foregroundPID) foregroundPID = 0;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Waiting For Signals - where we left off last time
The last thing we did in our simplesh
implementation last time was to fix
the spin-block by adding a sigsuspend
inside the while loop on line 11 in the
code.
But, there is still a race condition!

On line 20, we are in the parent
process. But, the child process has
already begun. What if the child
finishes before
waitForForegroundProcess gets
called (perfectly likely)?
foregroundPID will be set to 0 in
reapProcesses, then
waitForForegroundProcess gets
called...

23

Deadlock
Deadlock is a program state in which no progress can be made - it is caused by code

waiting for something that will never happen.

E.g. waitForForegroundProcess loops until foregroundPID is set to 0. But it never will be

set to 0 in this case!

We could force this to happen if we put a sleep(1) as the first line of

waitForForegroundProcess, and run a very short program in the foreground (e.g., date)

So, what we need to do is to use our signal blocking idea to ensure that the signal

handler does not get called until we are ready (much like in the job list example).
24

static pid_t fgpid = 0; // 0 means no foreground process
static void reapProcesses(int sig) {
 pid_t pid;
 while (true) {
 pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 if (pid == fgpid) fgpid = 0;
 }
}

static void waitForForegroundProcess(pid_t pid) {
 fgpid = pid;
 sigset_t empty;
 sigemptyset(&empty);
 while (fgpid == pid) {
 sigsuspend(&empty);
 }
 unblockSIGCHLD();
}

int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 while (true) {
 // ... (left out for brevity)
 blockSIGCHLD();
 pid_t pid = forkProcess();
 if (pid == 0) {
 unblockSIGCHLD();
 execvp(argv[0], argv);
 printf("%s: Command not found\n", argv[0]);
 exit(0);
 }

 if (isbg) {
 printf("%d %s\n", pid, command);
 unblockSIGCHLD();
 } else {
 waitForForegroundProcess(pid);
 }
 }
 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

There are a lot of blocking / unblocking calls here, and a
sigsuspend, too. Let's go through them:
Starting in main(), we see that we block SIGCHLD
before we fork (line 25). We must block here to avoid
the race condition
We unblock in the child (line 28) because child
processes inherit their blocked signals from the parent.
The child does not need a blocked SIGCHLD.
We unblock in the parent on line 36 because for a
background process, we can accept signals after this
point.
In waitForForegroundProcess, we call sigsuspend
without unblocking. This is because sigsuspend itself will
unblock! It sets the signal mask to empty, meaning that
it has unblocked. When sigsuspend wakes up, it re-
blocks (see next slide)
We unblock on line 18 because we no longer need the
signal blocked (though we will re-block when we start a
new process in main again).

25

static pid_t fgpid = 0; // 0 means no foreground process
static void reapProcesses(int sig) {
 pid_t pid;
 while (true) {
 pid = waitpid(-1, NULL, WNOHANG);
 if (pid <= 0) break;
 if (pid == fgpid) fgpid = 0;
 }
}

static void waitForForegroundProcess(pid_t pid) {
 fgpid = pid;
 sigset_t empty;
 sigemptyset(&empty);
 while (fgpid == pid) {
 sigsuspend(&empty);
 }
 unblockSIGCHLD();
}

int main(int argc, char *argv[]) {
 signal(SIGCHLD, reapProcesses);
 while (true) {
 // ... (left out for brevity)
 blockSIGCHLD();
 pid_t pid = forkProcess();
 if (pid == 0) {
 unblockSIGCHLD();
 execvp(argv[0], argv);
 printf("%s: Command not found\n", argv[0]);
 exit(0);
 }

 if (isbg) {
 printf("%d %s\n", pid, command);
 unblockSIGCHLD();
 } else {
 waitForForegroundProcess(pid);
 }
 }
 printf("\n");
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

sigsuspend() is an interesting system call:

sigsuspend, atomically both adjusts the blocked
signal set and goes to sleep until a signal is received.
 When some unblocked signal arrives, the process
gets the CPU, the signal is handled, the original
blocked set is restored, and sigsuspend returns.
Remember, "atomically" means that it does this
without creating a race condition. Nothing else can
happen (i.e., the signal cannot be called) between
the process going to sleep and the signals being
unblocked. The operating system is in control here,
and it puts the process to sleep (which is what we
want) and then unblocks the signals.
Notice that this happens inside the while loop. If we
had attempted to unblock and then pause (for
instance), there could still be a race condition
between those two lines of code.
We need to unblock (line 18) because when
sigsuspend wakes up, it re-blocks the signals (why?)

26

Plan For Today
Recap: Signals

Race Conditions and Atomicity

Revisiting sigsuspend

More Practice: Race Conditions

27

Consider this program and its execution. Assume that all processes run to completion, all system and
printf calls succeed, and that all calls to printf are atomic. Assume nothing about scheduling or time slice
durations.

static void bat(int unused) {
 printf("pirate\n");
 exit(0);
}

int main(int argc, char *argv[]) {
 signal(SIGUSR1, bat);
 pid_t pid = fork();
 if (pid == 0) {
 printf("ghost\n");
 return 0;
 }
 kill(pid, SIGUSR1);
 printf("ninja\n"); return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

For each of the five output orders, Place a yes if the text
represents a possible output, and place a no otherwise.

ghost ninja pirate
pirate ninja
ninja ghost
ninja pirate ninja
ninja pirate ghost

Practice Problem 1

28

Consider this program and its execution. Assume that all processes run to completion, all system and
printf calls succeed, and that all calls to printf are atomic. Assume nothing about scheduling or time slice
durations.

static void bat(int unused) {
 printf("pirate\n");
 exit(0);
}

int main(int argc, char *argv[]) {
 signal(SIGUSR1, bat);
 pid_t pid = fork();
 if (pid == 0) {
 printf("ghost\n");
 return 0;
 }
 kill(pid, SIGUSR1);
 printf("ninja\n"); return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

For each of the five output orders, Place a yes if the text
represents a possible output, and place a no otherwise.

ghost ninja pirate. yes
pirate ninja. yes
ninja ghost. no
ninja pirate ninja. no
ninja pirate ghost. no

Practice Problem 1

29

Consider this program and its execution. Assume that all processes run to completion, all system and
printf calls succeed, and that all calls to printf are atomic. Assume nothing about scheduling or time slice
durations.

int main(int argc, char *argv[]) {
 pid_t pid;
 int counter = 0;
 while (counter < 2) {
 pid = fork();
 if (pid > 0) break;
 counter++;
 printf("%d", counter);
 }
 if (counter > 0) printf("%d", counter);
 if (pid > 0) {
 waitpid(pid, NULL, 0);
 counter += 5;
 printf("%d", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

List all possible outputs

Practice Problem 2

30

Consider this program and its execution. Assume that all processes run to completion, all system and
printf calls succeed, and that all calls to printf are atomic. Assume nothing about scheduling or time slice
durations.

int main(int argc, char *argv[]) {
 pid_t pid;
 int counter = 0;
 while (counter < 2) {
 pid = fork();
 if (pid > 0) break;
 counter++;
 printf("%d", counter);
 }
 if (counter > 0) printf("%d", counter);
 if (pid > 0) {
 waitpid(pid, NULL, 0);
 counter += 5;
 printf("%d", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

List all possible outputs

Practice Problem 2

Possible Output 1: 112265
Possible Output 2: 121265
Possible Output 3: 122165

The grandparent that starts with counter 0 exits last, because
it waits on its child; the last output is 5
The parent that starts with counter 1 exits second to last,
after waiting for its child; the second-to-last output is 6
The parent that starts with counter 1 outputs first
The second parent (1) output and the two child (2)
outputs are up to the scheduler

31

Consider this program and its execution. Assume that all processes run to completion, all system and
printf calls succeed, and that all calls to printf are atomic. Assume nothing about scheduling or time slice
durations.

int main(int argc, char *argv[]) {
 pid_t pid;
 int counter = 0;
 while (counter < 2) {
 pid = fork();
 if (pid > 0) break;
 counter++;
 printf("%d", counter);
 }
 if (counter > 0) printf("%d", counter);
 if (pid > 0) {
 waitpid(pid, NULL, 0);
 counter += 5;
 printf("%d", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

List all possible outputs

Practice Problem 2

Possible Output 1: 112265
Possible Output 2: 121265
Possible Output 3: 122165

If the > of the counter > 0 test is changed to a >=, then
counter values of zeroes would be included in each possible
output. How many different outputs are now possible? (No
need to list the outputs—just present the number.)

32

Consider this program and its execution. Assume that all processes run to completion, all system and
printf calls succeed, and that all calls to printf are atomic. Assume nothing about scheduling or time slice
durations.

int main(int argc, char *argv[]) {
 pid_t pid;
 int counter = 0;
 while (counter < 2) {
 pid = fork();
 if (pid > 0) break;
 counter++;
 printf("%d", counter);
 }
 if (counter > 0) printf("%d", counter);
 if (pid > 0) {
 waitpid(pid, NULL, 0);
 counter += 5;
 printf("%d", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

List all possible outputs

Practice Problem 2

Possible Output 1: 112265
Possible Output 2: 121265
Possible Output 3: 122165

If the > of the counter > 0 test is changed to a >=, then
counter values of zeroes would be included in each possible
output. How many different outputs are now possible? (No
need to list the outputs—just present the number.)

18 outputs now (6 x the first number)

33

Consider the following program. Assume that each call to printf flushes its output to the console in full,
and further assume that none of the system calls fail in any unpredictable way (e.g. fork never fails, and
waitpid only returns -1 because there aren’t any child processes at the moment it decides on its return
value).

static pid_t pid; // necessarily global so handler1 has
 // access to it
static int counter = 0;
static void handler1(int unused) {
 counter++;
 printf("counter = %d\n", counter);
 kill(pid, SIGUSR1);
}
static void handler2(int unused) {
 counter += 10;
 printf("counter = %d\n", counter);
 exit(0);
}
int main(int argc, char *argv[]) {
 signal(SIGUSR1, handler1);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(getppid(), SIGUSR1);
 while (true) {}
 }
 if (waitpid(-1, NULL, 0) > 0) {
 counter += 1000;
 printf("counter = %d\n", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Practice Problem 3

What is the output of the program?
What are the two potential outputs of the
above program if the while (true) loop is
completely eliminated?
Describe how the two processes would need
to be scheduled in order for each of the two
outputs to be presented.
Now further assume the call to exit(0) has
also been removed from the
handler2 function . Are there any other
potential program outputs? If not, explain why.
If so, what are they?

34

Consider the following program. Assume that each call to printf flushes its output to the console in full,
and further assume that none of the system calls fail in any unpredictable way (e.g. fork never fails, and
waitpid only returns -1 because there aren’t any child processes at the moment it decides on its return
value).

Practice Problem 3

What is the output of the program?

This is the only possible output based on the
program's logic

 counter = 1
 counter = 10
 counter = 1001

static pid_t pid; // necessarily global so handler1 has
 // access to it
static int counter = 0;
static void handler1(int unused) {
 counter++;
 printf("counter = %d\n", counter);
 kill(pid, SIGUSR1);
}
static void handler2(int unused) {
 counter += 10;
 printf("counter = %d\n", counter);
 exit(0);
}
int main(int argc, char *argv[]) {
 signal(SIGUSR1, handler1);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(getppid(), SIGUSR1);
 while (true) {}
 }
 if (waitpid(-1, NULL, 0) > 0) {
 counter += 1000;
 printf("counter = %d\n", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

35

Consider the following program. Assume that each call to printf flushes its output to the console in full, and
further assume that none of the system calls fail in any unpredictable way (e.g. fork never fails, and waitpid
only returns -1 because there aren’t any child processes at the moment it decides on its return value).

static pid_t pid; // necessarily global so handler1 has
 // access to it
static int counter = 0;
static void handler1(int unused) {
 counter++;
 printf("counter = %d\n", counter);
 kill(pid, SIGUSR1);
}
static void handler2(int unused) {
 counter += 10;
 printf("counter = %d\n", counter);
 exit(0);
}
int main(int argc, char *argv[]) {
 signal(SIGUSR1, handler1);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(getppid(), SIGUSR1);
 while (true) {}
 }
 if (waitpid(-1, NULL, 0) > 0) {
 counter += 1000;
 printf("counter = %d\n", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Practice Problem 3

What are the two potential outputs of the above program if the
while (true) loop is completely eliminated?

The output from before (the 1 / 10 / 1001) output is still
possible, because the child process can be swapped out just
after the kill(getppid(), SIGUSR1) call, and
effectively emulate the stall that came with the while
(true) loop when it was present.
Now, though, the child process could complete and exit
normally before the parent process—via its handler1
function— has the opportunity to signal the child. That would
mean handler2 wouldn’t even execute, and we wouldn’t
expect to see counter = 10. (Note that the child process’s
call to waitpid returns -1, since it itself has no grandchild
processes of its own).So, another possible output would be:

counter = 1
counter = 1001

36

Consider the following program. Assume that each call to printf flushes its output to the console in full, and
further assume that none of the system calls fail in any unpredictable way (e.g. fork never fails, and waitpid
only returns -1 because there aren’t any child processes at the moment it decides on its return value).

Practice Problem 3

Now further assume the call to exit(0) has also been removed
from the handler2 function . Are there any other potential program
outputs? If not, explain why. If so, what are they?
No other potential outputs, because:

counter = 1 is still printed exactly once, just in the parent,
before the parent fires a SIGUSR1 signal at the child (which may
or may not have run to completion).
counter = 10 is potentially printed if the child is still running
at the time the parent fires that SIGUSR1 signal at it. The 10 can
only appear after the 1, and if it appears, it must appear before the
1001.
counter = 1001 is always printed last, after the child process
exits. It’s possible that the child existed at the time the parent
signaled it to inspire handler2 to print a 10, but that would
happen before the 1001 is printed.

Note that the child process either prints nothing at all, or it prints a 10. The child process can never print 1001,
because its waitpid call would return -1 and circumvent the code capable of printing the 1001.

static pid_t pid; // necessarily global so handler1 has
 // access to it
static int counter = 0;
static void handler1(int unused) {
 counter++;
 printf("counter = %d\n", counter);
 kill(pid, SIGUSR1);
}
static void handler2(int unused) {
 counter += 10;
 printf("counter = %d\n", counter);
 exit(0);
}
int main(int argc, char *argv[]) {
 signal(SIGUSR1, handler1);
 if ((pid = fork()) == 0) {
 signal(SIGUSR1, handler2);
 kill(getppid(), SIGUSR1);
 while (true) {}
 }
 if (waitpid(-1, NULL, 0) > 0) {
 counter += 1000;
 printf("counter = %d\n", counter);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

37

Concurrency is powerful: it lets our code do many things at the same time

It can run faster (more cores!)
It can do more (run many programs in background)
It can respond faster (don't have to wait for current action to complete)

Signals are a way for concurrent processes to interact

Send signals with kill and raise
Handle signals with signal
Control signal delivery with sigprocmask, sigsuspend
Preempt running code
Making sure code running in a signal handler works correctly is difficult
Race conditions occur when code can see data in an intermediate and invalid state (often KABOOM)

Assignments 3 and 4 use signals, as a way to start easing into concurrency before we tackle
multithreading
Take CS149 if you want to learn how to write high concurrency code that runs 100x faster

Overview: Signals and Concurrency

38

Recap
Recap: Signals

Race Conditions and Atomicity

Revisiting sigsuspend

More Practice: Race Conditions

Next Time: Introduction to Threads

39

