
Principles of Computer Systems

Winter 2020

Stanford University

Computer Science Department

Instructors: Chris Gregg

                            Nick Troccoli

 

PDF of this presentation

Lecture 17: MapReduceLecture 17: MapReduce

1

https://web.stanford.edu/class/cs110/static/lectures/cs110-lecture-17-mapreduce.pdf


 The Genesis of Datacenter Computing: MapReduce The Genesis of Datacenter Computing: MapReduce

2

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf


 The Genesis of Datacenter Computing: MapReduce The Genesis of Datacenter Computing: MapReduce
Problem for large service providers such as Google: computation requires hundreds or
thousands of computers

How do you distribute the computation?
Distributing the computation boils down to distributing data
Nodes fail, some nodes are slow, load balancing: difficult to make it work well

System came from observation that many early Google systems had a common pattern
Designing a computing system around this pattern

allows the system (written once) to do all of the hard systems work (fault tolerance,
load balancing, parallelization)
allows tens of thousands of programmers to just write their computation

Canonical example of how the right abstraction revolutionized computing

An open source version immediately appeared: Hadoop

"MapReduce is a programming model and an associated implementation for processing
and generating big data sets with a parallel, distributed algorithm on a cluster."
( )https://en.wikipedia.org/wiki/MapReduce

3

https://en.wikipedia.org/wiki/MapReduce


 The Genesis of Datacenter Computing: MapReduce The Genesis of Datacenter Computing: MapReduce
A MapReduce framework (or system) is usually composed of three operations (or steps):

1. Map: each worker node applies the map function to the local data, and writes the output
to a temporary storage. A master node ensures that only one copy of the redundant input
data is processed.

2. Shuffle: worker nodes redistribute data based on the output keys (produced by the map
function), such that all data belonging to one key is located on the same worker node.

3. Reduce: worker nodes now process each group of output data, per key, in parallel.

 

( )https://en.wikipedia.org/wiki/MapReduce

4

https://en.wikipedia.org/wiki/MapReduce


Core Data Abstraction: Key/Value PairsCore Data Abstraction: Key/Value Pairs
Take a huge amount of data (more than can fit in the memory of 1000 machines)
Write two functions: 
 
 
 
 
Using these two functions, MapReduce parallelizes the computation across thousands of
machines, automatically load balancing, recovering from failures, and producing the
correct result.
You can string together MapReduce programs: output of reduce becomes input to map.
Simple example of word count (wc):

map(k1, v1) ­> list(k2, v2)

reduce(k2, list(v2)) ­> list(v2)

map(String key, String value):
  // key: document name
  // value: document contents
  for word w in value:
    EmitIntermediate(w,"1")
    
reduce(String key, List values):
  // key: a word
  // values: a list of counts
  int result = 0
  for v in values:
    result += ParseInt(v)
  Emit(AsString(result))

1
2
3
4
5
6
7
8
9

10
11
12
13

"The number of partitions (R) and the
partitioning function are specified by the user."

("the", "1") , ("the", "1"), ("The", "1"), ("of", 1),
(number, "1"), ...

"the", ("1", "1") -> "2"
"The", ("1") -> "1"
"of", ("1") -> "1"
"number", ("1") -> "1"
 

 map
output

input

 reduce

5



Key/Value Pairs: How and WhereKey/Value Pairs: How and Where
Keys allow MapReduce to distribute and parallelize load 
 
 
 
 
Core abstraction: data can be partitioned by key, there is no locality between keys
In the original paper...

Each mapper writes a local file for each key in k2, and reports its files to a master node
The master node tells the reducer for k2 where the all of the k2 files are
The reducer reads all of the k2 files from the nodes that ran the mappers and writes
its own output locally, reporting this to the master node
There have been lots of optimizations since

Keys can be arbitrary data: hash the keys, and assign keys to splits using modulus

split(key) = hash(key) % N, where N is the number of splits

A master node tracks progress of workers and manages execution

When a worker falls idle, the master sends it a new split to compute
When the master thinks a worker has failed, tell another worker to compute its split

map(k1, v1) ­> list(k2, v2)

reduce(k2, list(v2)) ­> list(v2)

6



MapReduce System ArchitectureMapReduce System Architecture

7



Your MapReduceYour MapReduce
Your MapReduce will differ from the standard one in one significant way: instead of
writing results to local disk, it writes results to AFS, myth's networked file system

Every worker can access the files directly using AFS
Cost: file write is over the network
Benefit: recovery from failure is easier (don't have to regenerate lots files)
Benefit: don't have to write file transfer protocol (handled by AFS)

mapper reducer

Google

mapper reducer

Your System

8

AFS



The map component of a MapReduce job typically parses input data and distills it down
to some intermediate result.
The reduce component of a MapReduce job collates these intermediate results and
distills them down even further to the desired output.
The pipeline of processes involved in a MapReduce job is captured by the below
illustration: 
 
 
 
 
 
The processes shaded in yellow are programs specific to the data set being processed,
whereas the processes shaded in green are present in all MapReduce pipelines.
We'll invest some energy over the next several slides explaining what a mapper, a
reducer, and the group-by-key processes look like.

MapReduce Data FlowMapReduce Data Flow

9



Word Count ExampleWord Count Example
Walk through word count example in detail, see what MapReduce does
There are a bunch of parameters, let's set them so

Number of map tasks (input partitions/splits): 12

In normal MapReduce this is user-specifiable, in your implementation this is
predefined by how the input is split

Number of map workers: 4
Number of reduce tasks (intermediate and output partitions/splits ): 20
Number of reduce workers: 5

Each map task (assigned to one of 4 map workers) maps an input partition

 12 input partitions

chunks of file

map tasks

10

1

2

11

12

map(String key, String value):
  // key: document name
  // value: document contents
  for word w in value:
    EmitIntermediate(w,"1")
    
reduce(String key, List values):
  // key: a word
  // values: a list of counts
  int result = 0
  for v in values:
    result += ParseInt(v)
  Emit(AsString(result))

1
2
3
4
5
6
7
8
9

10
11
12
13



Word Count ExampleWord Count Example
Walk through word count example in detail, see what MapReduce does
There are a bunch of parameters, let's set them so

Number of map tasks (input partitions/splits): 12

In normal MapReduce this is user-specifiable, in your implementation this is
predefined by how the input is split

Number of map workers: 4
Number of reduce tasks (intermediate and output partitions/splits ): 20
Number of reduce workers: 5

Each map task produces 20 output files; each file F contains hash(key) % 20  == F

 12 input partitions

"Propitious Pallas, to secure..."

map tasks

11

1

2

11

12

 240 intermediate files
each of 12 map tasks produces

one file for each worker task

12.19.mapped

1.5.mapped

1.0.mapped

12.18.mapped

This file contains all of the map
outputs for map task 7 whose
key, modulo 20, is 5
 
in 1
now 1
step 1
now 1
in 1
in 1
....
 

7.5.mapped



Word Count ExampleWord Count Example
Walk through word count example in detail, see what MapReduce does
There are a bunch of parameters, let's set them so

Number of map tasks (input partitions/splits): 12

In normal MapReduce this is user-specifiable, in your implementation this is
predefined by how the input is split

Number of map workers: 4
Number of reduce tasks (intermediate and output partitions/splits ): 20
Number of reduce workers: 5

Runtime (your reducer) collates, sorts, and groups all of the inputs for each reduce task

 12 input partitions

"Propitious Pallas, to secure..."

map tasks

12

1

2

11

12

 240 intermediate files
each of 12 map tasks produces

one file for each worker task

12.19.mapped

1.5.mapped

1.0.mapped

12.18.mapped

7.5.mapped
5.grouped

This file contains all of the
reduce inputs for every key
whose hash % 20 == 5
 
in 1 1 1 1 1 1 1 1 .. (1149 times)
now 1 1 1 1 ... (126 times)
step 1 1 1 1 ... (10 times)
....
 



Word Count ExampleWord Count Example
Walk through word count example in detail, see what MapReduce does
There are a bunch of parameters, let's set them so

Number of map tasks (input partitions/splits): 12

In normal MapReduce this is user-specifiable, in your implementation this is
predefined by how the input is split

Number of map workers: 4
Number of reduce tasks (intermediate and output partitions/splits ): 20
Number of reduce workers: 5

Each reduce task (scheduled to one of 5 workers) runs reduce on its input

 12 input partitions

"Propitious Pallas, to secure..."

map tasks

13

1

2

11

12

 240 intermediate files
each of 12 map tasks produces

one file for each worker task

12.19.mapped

1.5.mapped

1.0.mapped

12.18.mapped

7.5.mapped
5.grouped

0

1

5

19

5.output

Contains the
count of
words whose
hash % 20 ==
5
 
in 1149
now 126
step 10

reduce tasks



Importance of KeysImportance of Keys
Keys are the mechanism that allows MapReduce to distribute load across many machines
while keeping data locality

All data with the same key is processed by the same mapper or reducer
Any map worker or reduce worker can process a given key
Keys can be collected together into larger units of work by hashing

We've seen this: if there are N tasks, a key K is the responsibility of the task whose
ID is hash(K) % N

Distinction between tasks and nodes: there are many more tasks than nodes

Worker nodes request work from the master server, which sends them map or reduce
tasks to execute
If one task is fast, the worker just requests a new one to complete
Very simple load balancing
This load balancing works because a task can run anywhere

14



Let's see an example run with the solution executables:

 

 

 

 

 

 

 

 

 

 

 

 

There is a plethora of communication between the machine we run on and the other
myths.
Output ends up in the files/ directory.

MapReduce Assignment: ExampleMapReduce Assignment: Example

myth57:$ make filefree 
rm -fr files/intermediate/* files/output/* 
 
myth57:$ ./samples/mr_soln --mapper ./samples/mrm_soln --reducer ./samples/mrr_soln --config odyssey-full.cfg 
 
Determining which machines in the myth cluster can be used... [done!!] 
Mapper executable: word-count-mapper 
Reducer executable: word-count-reducer 
Number of Mapping Workers: 8 
Number of Reducing Workers: 4 
Input Path: /usr/class/cs110/samples/assign8/odyssey-full 
Intermediate Path: /afs/.ir.stanford.edu/users/c/g/cgregg/cs110/winter-2020/assignments/assign8/files/intermediate 
Output Path: /afs/.ir.stanford.edu/users/c/g/cgregg/cs110/winter-2020/assignments/assign8/files/output 
Server running on port 48721 
 
Received a connection request from myth59.stanford.edu. 
Incoming communication from myth59.stanford.edu on descriptor 6. 
Instructing worker at myth59.stanford.edu to process this pattern: "/usr/class/cs110/samples/assign8/odyssey-full/00001.input" 
Conversation with myth59.stanford.edu complete. 
Received a connection request from myth61.stanford.edu. 
Incoming communication from myth61.stanford.edu on descriptor 7. 
 
... LOTS of lines removed 
 
Remote ssh command on myth56 executed and exited with status code 0. 
Reduction of all intermediate chunks now complete. 
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/winter-2020/assignments/assign8/files/output/00000.output hashes to 13585898109251157014 
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/winter-2020/assignments/assign8/files/output/00001.output hashes to 1022930401727915107 
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/winter-2020/assignments/assign8/files/output/00002.output hashes to 9942936493001557706 
/afs/.ir.stanford.edu/users/c/g/cgregg/cs110/winter-2020/assignments/assign8/files/output/00003.output hashes to 5127170323801202206 
 
... more lines removed 
 

15



The map phase of mr has the 8 mappers (from the .cfg file) process the 12 files processed

by word­count­mapper and put the results into  files/intermediate:

 

 

 

 

 

 

 

 

If we look at 00012.00028, we see:

 

 

 

MapReduce Assignment: Mapped File ContentsMapReduce Assignment: Mapped File Contents

myth57:$ ls -lu files/intermediate/ 
total 858 
-rw------- 1 cgregg operator 2279 May 29 09:29 00001.00000.mapped 
-rw------- 1 cgregg operator 1448 May 29 09:29 00001.00001.mapped 
-rw------- 1 cgregg operator 1927 May 29 09:29 00001.00002.mapped 
-rw------- 1 cgregg operator 2776 May 29 09:29 00001.00003.mapped 
-rw------- 1 cgregg operator 1071 May 29 09:29 00001.00004.mapped 
...lots removed 
-rw------- 1 cgregg operator  968 May 29 09:29 00012.00027.mapped 
-rw------- 1 cgregg operator 1720 May 29 09:29 00012.00028.mapped 
-rw------- 1 cgregg operator 1686 May 29 09:29 00012.00029.mapped 
-rw------- 1 cgregg operator 2930 May 29 09:29 00012.00030.mapped 
-rw------- 1 cgregg operator 2355 May 29 09:29 00012.00031.mapped

myth57:$ head -10 files/intermediate/00012.00028.mapped 
thee 1 
rest 1 
thee 1 
woes 1 
knows 1 
grieve 1 
sire 1 
laertes 1 
sire 1 
power 1

This file represents the words in
00012.input that hashed to 28

modulo 32 (because we have 8
mappers * 4 reducers)
Note that some words will appear
multiple times (e.g., "thee")

16



If we look at 00005.00028, we can also see "thee" again:

 

 

 

 

 

 

This makes sense because "thee" also occurs in file 00005.input (these files are not

reduced yet!)
"thee" hashes to 28 modulo 32, so it will end up in any of the .00028 files if occurs in the

input that produced that file.
To test a word with a hash, you can run the hasher program, located .here

MapReduce Assignment: HashingMapReduce Assignment: Hashing

myth57:$ head -10 files/intermediate/00005.00028.mapped 
vain 1 
must 1 
strand 1 
cry 1 
herself 1 
she 1 
along 1 
head 1 
dayreflection 1 
thee 1

myth57:$ ./hasher thee 32 
28

17

https://web.stanford.edu/class/cs110/examples/map-reduce/hasher.cc


Let's test the starter code (this only runs map):

 

 

 

 

 

 

 

 

If we look in files/intermediate, we see files without the reducer split:

MapReduce Assignment: Starter CodeMapReduce Assignment: Starter Code

myth57:~$ make directories filefree 
// make command listings removed for brevity 
myth57:~$ make 
// make command listings removed for brevity 
myth57:~$ ./mr --mapper ./mrm --reducer ./mrr --config odyssey-full.cfg --map-only --quiet  
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00001.mapped hashes to 2579744460591809953 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00002.mapped hashes to 15803262022774104844 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00003.mapped hashes to 15899354350090661280 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00004.mapped hashes to 15307244185057831752 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00005.mapped hashes to 13459647136135605867 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00006.mapped hashes to 2960163283726752270 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00007.mapped hashes to 3717115895887543972 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00008.mapped hashes to 8824063684278310934 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00009.mapped hashes to 673568360187010420 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00010.mapped hashes to 9867662168026348720 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00011.mapped hashes to 5390329291543335432 
/afs/ir.stanford.edu/users/c/g/cgregg/assign8/files/intermediate/00012.mapped hashes to 13755032733372518054 
myth57:~$ 

myth57:~$ $ ls -l files/intermediate/ 
total 655 
-rw------- 1 cgregg operator 76280 May 29 10:26 00001.mapped 
-rw------- 1 cgregg operator 54704 May 29 10:26 00002.mapped 
-rw------- 1 cgregg operator 53732 May 29 10:26 00003.mapped 
-rw------- 1 cgregg operator 53246 May 29 10:26 00004.mapped 
-rw------- 1 cgregg operator 53693 May 29 10:26 00005.mapped 
-rw------- 1 cgregg operator 53182 May 29 10:26 00006.mapped 
-rw------- 1 cgregg operator 54404 May 29 10:26 00007.mapped 
-rw------- 1 cgregg operator 53464 May 29 10:26 00008.mapped 
-rw------- 1 cgregg operator 53143 May 29 10:26 00009.mapped 
-rw------- 1 cgregg operator 53325 May 29 10:26 00010.mapped 
-rw------- 1 cgregg operator 53790 May 29 10:26 00011.mapped 
-rw------- 1 cgregg operator 52207 May 29 10:26 00012.mapped

It turns out that "thee" is only in 11
of the 12 files:

 

 

also, files/output is empty:

$ grep -l "^thee " files/intermediate/*.mapped \ 
          | wc -l 
11

myth57:$ ls -l files/output/ 
total 0

18



MapReduce questionsMapReduce questions

19



Master sends map and reduce tasks to workers

 

 

 

 

 

 

 

 

Centralized vs. DistributedCentralized vs. Distributed

20



Master sends map and reduce tasks to workers

This gives master a global view of the system: progress of map and reduce tasks, etc.
Simplifies scheduling and debugging

Master can become a bottleneck: what if it cannot issue tasks fast enough?

Centralized controllers can usually process 8,000-12,000 tasks/second
MapReduce generally does not hit this bottleneck

Both map and reduce tasks read from disk: take seconds-tens of seconds
MapReduce can scale to run on 80,000 - 120,000 cores

More modern  frameworks, like Spark, can

Spark and other frameworks operate on 
in-memory data
Significant work to make them 
computationally fast: sometimes 10s 
of ms

Centralized vs. DistributedCentralized vs. Distributed

"Execution Templates: Caching Control Plane Decisions for 
Strong Scaling of Data Analytics"

Omid Mashayekhi, Hang Qu, Chinmayee Shah, Philip Levis

In Proceedings of 2017 USENIX Annual Technical Conference
(USENIX ATC '17)

21



Graph shows what happens as you try 
to parallelize a Spark workload across 
more servers: it slows down
More and more time is spent in the
"control plane" -- sending messages to
spawn tasks to compute
Nodes fall idle, waiting for the master to
send them work to do.
Suppose tasks are 100ms long

30 workers = 2400 cores
Can execute 24,000 tasks/second
Master can only send 8,000

Centralized BottleneckCentralized Bottleneck

This bottleneck will only worsen as we make tasks computationally faster: Spark used
to be 50x slower than C++, now it is 6x slower (3x for JVM, 2x for data copies)

What happens when it involves C++ libraries and is 1.1x slower?
What happens when it invokes GPUs?

22



Some systems have no centralized master: there are only worker nodes
Problem: what do you do when one of the workers fails? How do other workers discover
this and respond appropriately?

In practice, these systems just fail and force you to restart the computation
Complexity of handling this is not work the benefit of automatic recovery

Problem: how do you load balance?

You do so locally and suboptimally or not at all
Just try to keep workers busy
Work stealing: if a worker falls idle, tries to steal work from adjacent workers
Can require complex reconfiguration of program, as workers need to know new
placements of computations/data (e.g., Naiad requires installing new dataflow graph)

Decentralized Approach (e.g., Naiad, MPI)Decentralized Approach (e.g., Naiad, MPI)

23



If a job uses fast tasks and runs for a long time, it must either be an enormously long
program or have loops
Loops are repeated patterns of control plane messages: they execute the same tasks
again and again

Common in machine learning, simulations, data analytics, approximations, etc.

Idea: rather than execute each loop iteration from scratch, cache a block of control plane
operations and re-instantiate with a 
single message
This occurs between the user program 
and the master as well as between the 
master and workers
Call this cached structure a template: 
some values and structures are static 
(like which tasks to execute), others are 
bound dynamically (like which data 
objects to operate on, task IDs, etc.)

Idea: Cache Control Plane MessagesIdea: Cache Control Plane Messages

"Execution Templates: Caching Control Plane Decisions for 
Strong Scaling of Data Analytics"

Omid Mashayekhi, Hang Qu, Chinmayee Shah, Philip Levis

In Proceedings of 2017 USENIX Annual Technical Conference
(USENIX ATC '17)

24



ResultsResults

"Execution Templates: Caching Control Plane Decisions for Strong Scaling of Data Analytics"

Omid Mashayekhi, Hang Qu, Chinmayee Shah, Philip Levis

In Proceedings of 2017 USENIX Annual Technical Conference (USENIX ATC '17)

Caching control plane messages (Nimbus) is as fast as systems that do not have a
centralized master (Naiad-opt), and much faster than systems which have a centralized
master but do not cache messages (Spark-opt)

25



ResultsResults

"Execution Templates: Caching Control Plane Decisions for Strong Scaling of Data Analytics"

Omid Mashayekhi, Hang Qu, Chinmayee Shah, Philip Levis

In Proceedings of 2017 USENIX Annual Technical Conference (USENIX ATC '17)

Caching control plane messages allows Nimbus to scale to support over 100,000
tasks/second, while Spark bottlenecks around 6,000

26



ResultsResults

"Execution Templates: Caching Control Plane Decisions for Strong Scaling of Data Analytics"

Omid Mashayekhi, Hang Qu, Chinmayee Shah, Philip Levis

In Proceedings of 2017 USENIX Annual Technical Conference (USENIX ATC '17)

Because systems caching control messages can use a centralized manager, they can
recover from failures and load-balance easily, although doing so requires generating
new templates and caching them.

27


