
Final Exam, CS 110, Spring 2019
SOLUTION

SUNet ID (username):________________@stanford.edu

Last Name: _________________________________
First Name: _________________________________

I accept the letter and spirit of the honor code.
[signed]
 __

http://stanford.edu

Problem 1: Serving CGI
20 points
This question has four parts
For this problem you will create a simple file server, able to return files to a client. It will have an
extra feature which is common on web servers: it will be able to run programs and send the
output of the program back to the web page. The standard protocol for running files is called the
"Common Gateway Interface," or CGI for short. If a web server receives a file with an extension
of cgi it will run the file as a program, instead of simply returning the file to the client. It will
capture the output of the program and send that to the client.
Your server will have six functions, and you will write four of them for this problem. Here is the
documented header file for the server:
 * File: cgi-server.h
 * -------------------------------
 * File server that runs scripts if the file
 * suffix is .cgi
 * The server also servers a proper Content-type: html/text
 * when the file suffix is .html
 * and Content-type: text/plain when the file suffix is anything els
 *
 */

#include <iostream> // for cout, cerr, endl
#include <sstream>
#include <fstream>
#include <algorithm>
#include <sys/socket.h> // for accept, etc.
#include "socket++/sockstream.h" // for sockbuf, iosockstream
#include "server-socket.h"
#include "thread-pool.h"
#include "subprocess.h"

using namespace std;

// constants and ENUM
static const unsigned short kDefaultPort = 12345;
enum ContentType {TEXT, HTML, CGI};
// to use an enum, simply refer to it as you would any integer type,
e.g.
// if (contentType == TEXT) ...

/* function: sendResponse
 * parameters:
 * iosockstream &ss : the client to send the response to
 * string responseStatus : the entire responseStatus header
 * string payload : the payload to send to the client
 * ContentType contentType : self-explanatory
 * notes:

 * This function should perform three functions:
 * 1. Send response status to client
 * 2. If the contentType is HTML, send the Content-type as
"Content-type: text/html"
 * If the contentType is anything else other than CGI,
 * send the Content-type as: "Content-type: text/plain"
 * If the contentType is CGI, do not send a Content-type header
 * 3. Send the payload
*/
static void sendResponse(iosockstream &ss,
 string responseStatus,
 string payload,
 ContentType contentType);

/* function: parseRequest
 * parameter:
 * iosockstream &ss : the client to read the request from
 * return value:
 * string : the relative path of the file, e.g., path/filename.txt
 * notes:
 * assume GET request is in the form
 * GET http://webserver.com/path/filename.ext
 * This function should read in all of the headers and return
 * just the path and filename, without the webserver
 * Example header to parse:
 * GET http://webserver.com/path/filename.ext
 * Host: webserver.com
 * ...other headers we don't care about, ending with a blank line
 *
 * Example return value for above header:
 * "path/filename.ext"
*/
static string parseRequest(iosockstream &ss);

/* function: hasEnding
 * parameter:
 * string const &fullString : the string to look in
 * string const &ending : the ending (e.g., ".txt")
 * return value:
 * bool : true if the string ends with ending, false otherwise
 * notes:
 * Helper function provided for you
*/
bool hasEnding (string const &fullString, string const &ending);

/* function: readFile (method 1)
 * parameter:
 * string const &filename : the filename to read
 * return value:

 * string : the entire contents of the file
 * notes:
 * Helper function provided for you
*/
static string readFile(const string &filename);

/* function: readFile (method 2)
 * parameter:
 * int fd : a file descriptor to read from
 * return value:
 * string : the entire contents of the file
 * referred to by the file descriptor
 * notes:
 * You must use the read() system call for this function
*/
static string readFile(int fd);

/* function: serveRequest
 * parameter:
 * int client : a file descriptor returned from the accept() system
call
 * return value:
 * none
 * notes:
 * once a request is parsed, if the extension of the file is .cgi,
 * then the program should be run and the output should be sent to
 * the client. You can assume that the program to be run does not
 * take any arguments
 * if the request is a file, the file should be read in and sent to
 * the client
 * if the file exists, the response should be "HTTP/1.0 200 OK"
 * if the file does not exist, the response should be
 * HTTP/1.0 404 NOT FOUND and the payload should simply be
 * "File not found!"
*/
static void serveRequest(int client);

Here is the main function, written for you:
 int main(int argc, char *argv[]) {
 int server = createServerSocket(kDefaultPort);

 cout << "Server listening on port " << kDefaultPort << "." <<
endl;
 ThreadPool pool(4);
 while (true) {
 int client = accept(server, NULL, NULL);
 pool.schedule([client] { serveRequest(client); });
 }
 return 0;

}

Notes:
• You should use the subprocess function to launch the cgi programs. See the

Relevant Prototypes handout for the function signature for subprocess and for
struct subprocess_t.

• You can assume that there will be no payload on any request
a) Write the sendResponse function below. [4 points]
static void sendResponse(iosockstream &ss,
 string responseStatus,
 string payload,
 ContentType contentType) {

 // This function should perform three functions:
 // 1. Send response status to client
 // 2. If the contentType is HTML, send the Content-type as
text/html
 // If the contentType is anything other than CGI,
 // send the Content-type as text/plainA
 // If the contentType is CGI, do not send a Content-type
header
 // 3. Send the payload
 ss << responseStatus << endl;
 if (contentType == HTML) {
 ss << "Content-type: text/html" << endl << endl;
 }
 else if (contentType == TEXT) {
 ss << "Content-type: text/plain" << endl << endl;
 }
 ss << payload << endl << flush;
}

b) Write the parseRequest function below. [3 points]
 static string parseRequest(iosockstream &ss) {
 // assume GET request is in the form
 // GET http://webserver.com/path/filename.ext
 string method, path, protocol;
 ss >> method >> path >> protocol;
 if (ss.fail()) return ""; // in case request isn't HTTP
 string rest;
 getline(ss, rest);
 do {
 getline(ss, rest);
 cout << rest << endl;
 } while (rest != "" && rest != "\r");

 // we need to find the 3rd slash, so we can return just the
file path
 for (int i=0; i < 3; i++) {
 size_t pos = path.find("/");
 path = path.substr(pos + 1);
 }
 return path;
}

c) Write the readFile(int fd) function below. [4 points]
 // You must use the read() system call for this function
 static string readFile(int fd) {

 string all = "";
 char buf[1024];
 while (true) {
 int bytesRead = read(fd,buf,sizeof(buf)-1); // need
space for nul-terminator
 if (bytesRead == 0) break; // all done!
 buf[bytesRead] = '\0';
 all += buf;
 }
 return all;

 }

d) Write the serveRequest function below. [9 points]
 static void serveRequest(int client) {
 sockbuf sb(client); // destructor closes socket
 iosockstream ss(&sb);

 string filename = parseRequest(ss);
 if (fileExists(filename)) {
 string responseStatus = "HTTP/1.0 200 OK";
 if (hasEnding(filename, ".cgi")) {
 // assume no arguments, just launch program
 filename = "./"+ filename;
 char *argv[2];
 argv[0] = (char *)filename.c_str();
 argv[1] = NULL;
 subprocess_t subp = subprocess(argv, false, true);
 waitpid(subp.pid,NULL,0);
 string resultStr = readFile(subp.ingestfd);
 sendResponse(ss, responseStatus, resultStr, CGI);
 } else {
 string entireFile = readFile(filename);
 sendResponse(ss, responseStatus, entireFile,
hasEnding(filename, ".html") ? HTML : TEXT);
 }
 } else {
 sendResponse(ss, "HTTP/1.0 404 NOT FOUND", "File not
found!", TEXT);
 }

Problem 2: Signal Handling with
Information:

A Process Circle
15 points
One of the limitations of using signal handlers to signal processes is that there is no information
passed when a signal handler is invoked. Or is there? The function signature for a signal
handler is as follows:

typedef void (*sighandler_t)(int);

In other words, all of our signal handlers have had the following form:

void sighandler(int sig) { ... } // sig is the signal number

Therefore, with a little bit of ingenuity, we can use the signal information to help drive the logic of
the signal handler, even though there is no shared memory between processes. We will
leverage the fact that there are two signals, SIGUSR1 and SIGUSR2 that are for any use our
program chooses, and we will use the same signal handler for both signals. If the signal passed
in is SIGUSR1 then the logic of the handler will be based on that information, and likewise if
the signal is SIGUSR2, we can have different logic.
For this problem, create a "process circle" of length n, where the parent and n-1 children are
in the circle. You can think of the circle as a circular linked list, if you'd like. The circle is built
such that the first child signals the parent, the second child signals the first child, etc., and the
parent signals the last child:

When a SIGUSR1 is sent to any of the processes, that process should print out its PID, an
arrow (->), and then signal the next process in the circle. The printing stops after the last

process in the circle has printed. In other words, you have to avoid an infinite loop. For example,
if process 1 above was signaled with kill(1236, SIGUSR1), the following should print:

1236->1235->1234->1237->

Write the signal handler, usrHandler, and the circle creation function,
createProcessCircle below.

Notes:
• Because of the infinite loop problem, you have to figure out how to ensure that the

looping stops after all of the nodes in the circle have printed. This is where the two
different signals will be helpful. In other words, how can you tell one node that it will need
to stop if it is signaled a second time, and how can you ensure that the other nodes don't
stop on the first time?

• You may use static variables inside the signal handler to retain state, but you are not
allowed to create other global variables.

• The parent and each child should end up in a while(true) {...} loop, with a
proper sigsuspend command to keep the process off the processor when not
receiving signals. You don't need to block any signals, but you should use a
sigsuspend properly in the while(true) {... } loop to avoid busy waiting.
In other words: once the children have all been launched, they go into a non-busy
waiting state, only to be woken up by the signal handler. The parent also ends up in a
while(true) {...} loop, and also waits in a non-busy way.

• The example above should be able to be run multiple times, with different processes in
the circle. In other words, you should be able to generate a circle diagram as above as
many times as you wish (although the printing must be finished before trying a different
starting process). See the diagram below, which shows two windows. In the larger
window, the process circle program has been launched. In the smaller window, we have
sent the SIGUSR1 signal three times, generating the output in the larger window:

#include <unistd.h>
#include <stdio.h>
#include <sys/wait.h>
#include <errno.h>

#include "exit-utils.h" // exitIf, exitUnless
#include "sleep-utils.h"
#include <stdbool.h>

// see main function on next page

static pid_t prevPid; // global

static void usrHandler(int sig) {
 // STUDENT CODE HERE
 static bool stopNextTime = false;
 if (stopNextTime) {
 stopNextTime = false;
 printf("\n");
 return; // done!
 }

 if (sig == SIGUSR1) stopNextTime = true;

 printf("%d->",getpid());
 fflush(stdout); // actually necessary, but do not take points off
 kill(prevPid,SIGUSR2);
}

void createProcessCircle(int circleSize) {

 // STUDENT CODE HERE

 sigset_t empty;
 sigemptyset(&empty);
 prevPid = getpid(); // parent pid
 for (int i=0; i < circleSize - 1; i++) {
 pid_t pid = fork();
 if (pid == 0) {
 while (1) {
 sigsuspend(&empty);
 }
 }
 prevPid = pid;
 }

 while (1) {
 sigsuspend(&empty);
 }
}

int main(int argc, char *argv[]) {
 if (argc != 2) {
 printf("usage:\n\t%s circleSize\n",argv[0]);
 return -1;
 }
 signal(SIGUSR1, usrHandler);
 signal(SIGUSR2, usrHandler);

 printf("parent pid: %d\n", getpid());
 createProcessCircle(atoi(argv[1]));
 return 0;
}  

Problem 3: Concurrency and
Getting Supplies to Mars
15 points
You're writing a simulation for moving necessary supplies to support a Mars colony. There are
technicians who organize the supplies into a container and load it onto a rocket,
astronouts who fly the rockets full of containers to Mars, and martians who unpack the
containers. At the beginning of the simulation, one thread is spawned for each technician
and one for each astronaut. Threads for the martians are spawned as needed (this
process is described below). There is only one launchpad, which is used to load the cargo, and
the astronouts (who fly their own rockets) must wait for the launch pad to become available.
A technician is responsible for organizing just one container and getting it onto a rocket (in
other words, they perform the loading, as well). First, they must round up an empty container.
There are a fixed number of containers available for all technicians to use. Once the technician
has a container, they organize it with stuff and then load it. To load, a rocket needs to be at
the launch pad and have space for another container. The technician who puts the final
container on the rocket tells the astronaut to go. Once their container is loaded, the technician's
work is done (and the thread exits).
Each astronaut thread is responsible for making one trip to pick up containers, taking them
to Mars, and unloading. The astronaut first "refuels" the rocket and then goes to pick
up containers. There is only one launch pad, so only one rocket can be loading at once. The
astronaut hangs out while the technicians pile on the containers. Each rocket has a capacity
that is established when created. The rocket is considered loaded when it is full to its capacity or
it is the last rocket and there are no more containers to load. After the rocket is loaded, the
astronaut "flys" the rocket to Mars. On Mars, the astronaut takes each container off the rocket
and dispatches a separate martian thread to unpack it. Once the martians are
dispatched, the astronaut waits for all spawned martian threads to finish, and only when that
happens is the astronaut done (and the astronaut thread exits).
Each martian is responsible for "unpacking" one container. Once the container is
unpacked, it is empty and should be made available to the packers who are in need of empty
containers. (Assume that each container has a corresponding container that has already made
the round trip and as a container is finished on Mars, one is immediately ready back on Earth).
Several rockets can be unloaded simultaneously, and martians can work in parallel. Once
the martian unpacks their box, their job is done (and their thread exits).
Here is the starting main function for the packing simulation.

const static int kNumContainersToMove = 300;
const static int kNumEmptyContainers = 70;

int main(int argc, char *argv[]) {
 RandomGenerator rgen;
 vector<thread> threads;
 int totalRocketCapacity = 0;

 for (int i = 0; i < kNumContaineresToMove; i++) {
 // create technician threads
 threads.push_back(thread(technician));
 }

 while (totalRocketCapacity < kNumContainersToMove) {
 // create astronaut threads
 int thisRocketHolds = rgen.getNextInt(10, kNumEmptyContainers);
 totalRocketCapacity += thisRocketHolds;
 threads.push_back(thread(astronaut, thisRocketHolds));
 }

 for (thread& t: threads) t.join();
 return 0;
}

// simulation functions already written for you
static void organize(); // for technician, to fill container with
stuff
static void refuel(); // for astronaut, to prepare rocket
static void fly(); // for astronaut, fly to Mars
static void unpack(); // for martian, to unload container contents

Assume the above helpers are already written and are thread-safe, and you can just call them
when you need to. Your job will be to write the technician, astronaut, and martian
functions to properly synchronize the different activities and efficiently share the common
resources.
Declare your global variables, mutexes, and semaphores, and then implement the
technician [5 points], astronaut [8 points], and martian [2 points] functions. Do not
busy wait anywhere!

// declare your global variables here:
// STUDENT CODE HERE

static int numLoaded = 0;
static int rocketCapacity = 0;
static int numLeft = kNumBoxesToMove;
static mutex launchPad;
static semaphore rocketLoaded;
static semaphore rocketLoadingAndHasSpace;
static semaphore emptyBoxes(kNumEmptyBoxes);

void technician() {
 // STUDENT CODE HERE
 emptyBoxes.wait();
 organize();
 rocketLoadingAndHasSpace.wait(); // also acts as lock on
globals
 numLoaded++;
 numLeft--;
 if (numLoaded == rocketCapacity || numLeft == 0)
 rocketLoaded.signal(); // tell astronaut to go
 else
 rocketLoadingAndHasSpace.signal(); // release lock to
next technician
}

void astronaut(int capacity) {
 // STUDENT CODE HERE
 refuel();
 launchPad.lock();
 if (numLeft == 0) {
 launchPad.unlock();
 return;
 }
 rocketCapacity = capacity;
 numLoaded = 0;
 rocketLoadingAndHasSpace.signal();
 rocketLoaded.wait();
 int numBoxesOnRocket = numLoaded;
 launchPad.unlock();
 fly();
 vector<thread> martians(numBoxesOnRocket);
 for (thread& t: martians) {
 t = thread(martian);
 }

 for (thread& t: martians) {
 t.join();
 }
}

void martian() {
 // STUDENT CODE HERE
 unpack();
 emptyBoxes.signal();

}  

Problem 4: Miscellaneous Questions
8 points
This problem has 4 parts.
Answer the four questions below. Limit your answers to 150 words or less. Please. :)

a) Generally, there are two different ways we use semaphores (throughout lecture and the
assignments, you have seen semaphores used in many different scenarios, but the way we
use semaphores in these two scenarios falls into one of these two usage patterns). Describe
these two use cases, and be explicit about how they differ. [2 points]

Usage pattern #1: we have a set of permits so we can limit the number of threads at a
given time. We used this extensively in the RSS feed assignment.

Usage pattern #2: Two processes that need to order their actions. We can use a
semaphore(0) for this, and when the first thread waits in a function, the second can
signal the first when it is done.

b) Describe the difference between an "I/O Bound" program and a "CPU Bound" program. If we
were to speed up the CPU on our computer, but it did not speed up the problem we were trying
to solve with a program, would the program be I/O Bound or CPU Bound? [2 points]

I/O Bound means that the I/O is the part that is slowing down our program. In other
words, having a faster CPU will not help.

CPU Bound means that the CPU is the bottleneck. If we speed up the I/O, this won’t help
the situation.

If we sped up the CPU and it does not speed up the problem, then we are I/O Bound.

c) Our own solution for the ThreadPool class includes "lazy" initialization of worker threads.
This means that we do not actually launch any worker threads until they are needed. So, for
example, if we create a 64-thread ThreadPool (e.g., ThreadPool tp(64)), and then
we only scheduled ten threads to work, we would only actually create ten worker threads, at the
time they are scheduled. As another example, suppose we had written the Farm problem with
threads instead of processes. We could launch all farm workers at the beginning (non-lazy), or
we could only launch a worker when it is needed, up to a maximum amount of total worker
threads allowed (lazy). Explain the benefit of lazy thread initialization, and explain one downside
to lazy thread initialization. [2 points]

Benefit of lazy initialization: we won’t waste resources on threads that we don’t use. Until
we hit the limit of threads we need at a given time, we know we only have the threads we
need in use.

Downside of lazy initialization: we need to spin up a thread an initial time when we first
launch it. This is a time penalty that would only occur when we start the program if we
didn’t lazily initialize.

d) The following is the general pattern for using a condition variable:

m.lock();
cv.wait(m, []{return condition > 0});
m.unlock();

Explain two reasons why a mutex is necessary for a condition variable to work properly. [2
points]

Reason #1: Without the mutex, we need to be able to check the predicate without data
races.

Reason #2: Without a mutex, a thread could notify() before the wait(), and we would miss
the signal.

Reason #3: After we wait for the condition to be true, we need the mutex to make sure it’s
still true by the time cv.wait() returns and we get a chance to do something with that
condition.

Relevant Prototypes
// filesystem access
int close(int fd); // ignore retval
int dup(int fd); // ignore retval
int dup2(int oldfd, int newfd); // ignore retval
int pipe(int fds[]); // ignore retval
int pipe2(int fds[], int flags); // ignore retval, flags typically O_CLOEXEC
#define STDIN_FILENO 0
#define STDOUT_FILENO 1

// exceptional control flow and multiprocessing
pid_t fork();
pid_t waitpid(pid_t pid, int *status, int flags);
int execvp(const char *path, char *argv[]); // ignore retval
int kill(pid_t pid, int signal); // ignore retval
typedef void (*sighandler_t)(int sig);
sighandler_t signal(int signum, sighandler_t handler); // ignore retval
int sigemptyset(sigset_t *set); // ignore retval
int sigaddset(sigset_t *set, int sig); // ignore retval
int sigprocmask(int how, const sigset_t *set, sigset_t *old);

#define WIFEXITED(status) // macro
#define WIFSTOPPED(status) // macro

class mutex {
public:
 void lock();
 void unlock();
};

class semaphore {
public:
 semaphore(int count = 0);
 void wait();
 void signal();
};

class condition_variable_any {
public:
 void wait(mutex& m);
 template <typename Pred>
 void wait(mutex& m, Pred p);
 void notify_one();
 void notify_all();
};

class ThreadPool {
public:
 ThreadPool(size_t numThreads);
 void schedule(Thunk t);
 void wait();
};

struct subprocess_t {
 pid_t pid;
 int supplyfd;
 int ingestfd;
};

subprocess_t subprocess(char *argv[],
 bool supplyChildInput,
 bool ingestChildOutput);

template <typename T>
class vector {
public:
 size_t size() const;

void push_back(const T& elem);
T& operator[](size_t i);
const T& operator[](size_t i) const;

};

template <typename T>
class list {
public:
bool empty() const;
size_t size() const;
void push_back(const T& elem);
T& front();

void pop_front();
};

template <typename U, typename V>
struct pair {
 U first;
 V second;
};

Template <typename Key, typename Value>
class map {
public:
 // iter points to pair<Key, Value>
 size_t size() const;
 iter find(const Key& k);
 Value& operator[](const Key& k);
};

