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Winter 2014: CS110 Final Examination Solution 
 
Solution 1: fork and signal 

a. Which single line of the output is incorrect, and what should it be?  
 

The last line must print a 1, since the original parent process is never signaled, and hence 
its counter is incremented by one just one time. 
 
Criteria for Problem 1a: 2 points 

• 2 points for correct answer, 0 points for incorrect answer 
 

b. Which two lines might be exchanged by another test run? Why can that happen? 
 
The first two lines might be exchanged, since the child’s first printf and the 
grandchild’s first printf can execute in either order.  This can happen because there are 
no waitpid or kill calls prior to either of them, so each can progress toward their first 
printf without being blocked or stalled by another.  (It’s possible other pairs of lines are 
exchanged, but the published counters would be different.) 
 
Criteria for Problem 1b: 2 points 

• 2 points for correct answer, 0 points for incorrect answer 
 

c. Which line might be missing altogether from another test run? Why can that happen? 
 
The 7500 might be missing, because the grandchild could exit before the child signals it. 
 
Criteria for Problem 1c: 2 points 

• 2 points for correct answer, 0 points for incorrect answer 
 

Solution 2: ThreadPool and Office Hours 

a. First, declare your global variables, ensuring that all of them are properly initialized.  
Because each of the TA’s can work concurrently with different students, you need to 
maintain an array of structs—one struct for each TA!  You’ll also need a few isolated 
global variables. 
 
You should only need to make use of primitive types, mutexes, and semaphores (no 
condition_variables can be used for this problem.)  For this problem you can just note 
what each of the global variables and struct fields should be initialized to if they aren’t 
properly initialized by default. 
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static struct ta { 
  mutex available; 
  semaphore requested; 
  semaphore finished; 
  size_t races; // doesn’t need to be initialized 
} tas[kNumTAs]; 
 
static semaphore availablePowerOutlets(kNumPowerOutlets); 
static size_t numStudents = kNumStudents; 
static mutex numStudentsLock; 
 
Criteria for Problem 2a: 7 points 

• Includes a field in each struct to ensure at most one student is being helped by a 
TA at any one time: 1 point 

• Includes a field in each struct where the number of race conditions can be shared 
with the student being helped: 1 point 

• Includes a semaphore in each struct that can be used to signal the TA that a student 
is present: 1 point 

• Includes a second semaphore in each struct that can be used to signal a student 
that his code has been reviewed: 1 point 

• Includes a global semaphore to manage the number of available outlets: 1 point (0 
points if global int with companion mutex—leads to busy waiting) 

• Global count on the number of students: 1 point (if they use atomic<int>, ok!) 
• Global mutex guarding the global count: 1 point (not needed for atomic<int>) 

 
b. Using this and the next page, present your implementation of the ta and student thread 

routines.  Be sure to avoid race conditions, deadlock, and busy waiting. 
 

static void ta(size_t id) { 
  while (true) { 
    tas[id].requested.wait(); 
    if (numStudents == 0) return; 
    tas[id].races = review(); 
    tas[id].finished.signal(); 
    grade(); 
  } 
} 

 
Criteria for Problem 2b, ta routine: 6 points 

• Efficiently blocks until a student wakes her up: 2 points 
• Examines the global student count and returns on 0: 1 point 
• reviews the student code and places value in location that its student knows about: 

1 point 
• notifies the student that his code has been reviewed: 2 points 
• Non-CS110 issues like grade, while (true), etc: 0 points 
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static void student() { 
  size_t races = 1; 
  availablePowerOutlets.wait(); 
  for (size_t i = 0; races > 0 && i < kMaxNumRounds; i++) { 
    debug(); 
    size_t id = random(); 
    tas[id].available.lock(); 
    tas[id].requested.signal(); 
    tas[id].finished.wait(); 
    races = tas[id].races; 
    tas[id].available.unlock(); 
  } 
   
  if (races == 0) squeal(); 
  submit(); 
  availablePowerOutlets.signal(); 
  lock_guard<mutex> lg(numStudentsLock); 
  numStudents--; 
  if (numStudents == 0)  
    for (struct ta& ta: tas)  
      ta.requested.signal(); 
} 
 
Criteria for Problem 2b, student routine: 12 points 

• Efficiently waits for a power outlet to become available: 1 point 
• Selects a random TA and efficiently blocks until he becomes available: 2 points 
• Signals the TA that she is needed for a code review: 2 points 
• Waits until the TA has reviewed his code: 1 point 
• Pulls the number of race conditions into his scope so he can act on it: 1 point 
• Allows the TA to move on to other students: 1 point 
• Eventually stops coding: 0 points 
• signals that one more power outlet is available: 1 point 
• Atomically decrements the number of students needing help: 1 point 
• signals all of the TAs when he notices all students have been helped: 2 points 
• squeal, submit, etc are all for back story, but not worth anything: 0 points 
 

Solution 3: Read-Write Locks 

a. The implementation of acquireAsReader acquires the stateLock (via the 
lock_guard) before it does anything else, and it doesn’t release the stateLock until the 
method exits.  Why can’t the implementation be this instead? 

 
void rwlock::acquireAsReader() { 
  stateLock.lock(); 
  stateCond.wait(stateLock, [this]{ return writeState == Ready; }); 
  stateLock.unlock(); 
  lock_guard<mutex> lgr(readLock); 
  numReaders++; 
} 
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Assume just two threads: 
 
• Thread 1 calls acquireAsReader and is swapped off after third of five lines. 
• Thread 2 calls and progresses through all of acquireAsWriter. 
• Thread 1 progresses through rest of acquireAsReader. 
 
We have one reader and one writer, and that’s forbidden. 
 
Criteria for Problem 3a: 2 points 

• 2 points for perfectly clear, correct answer 
• 1 point for ambiguous answer that could be interpreted as correct 
• 0 points for incorrect answer or answer that’s clearly too long 

 
b. The implementation of acquireAsWriter acquires the stateLock before it does 

anything else and it releases the stateLock just before it acquires the readLock.  Why 
can’t acquireAsWriter adopt the same approach as acquireAsReader and just hold 
onto stateLock until the method returns? 

 
If the writer doesn’t release stateLock before waiting for the number of readers to fall 
to 0, it blocks readers trying to release their locks from decrementing numReaders. 

 
Criteria for Problem 3b: 2 points 

• 2 points for perfectly clear, correct answer 
• 1 point for ambiguous answer that could be interpreted as correct 
• 0 points for incorrect answer or answer that’s clearly too long 

 
c. Notice that we have a single release method instead of releaseAsReader and 

releaseAsWriter methods.  How does the implementation know if the thread acquired 
the rwlock as a writer instead of a reader (assuming proper use of the class)? 
 

The implementation is such that the write state can only be Writing when there’s one 
write lock and zero read locks.  When the write state is Writing, then only one thread 
could possibly be calling release, unless the class is being used improperly. 
 
Criteria for Problem 3c: 3 points 

• 3 points for perfectly clear, correct answer 
• 1 point for ambiguous answer that could be interpreted as correct 
• 0 points for incorrect answer or answer that’s clearly too long 
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d. The implementation of release relies on notify_all in one place and notify_one in 
another.  Why are those the correct versions of notify to call in each case? 
 

Any number of threads might be waiting for a Ready state so they can advance to 
acquire read locks.  The writer needs to notify all of them when it releases the write lock. 
At most one thread—a writer—can be waiting for the number of readers to be 0, so 
calling notify_one is sufficient. 
 
Criteria for Problem 3d: 3 points 

• 3 points for perfectly clear, correct answer 
• 1 point for ambiguous answer that could be interpreted as correct 
• 0 points for incorrect answer or answer that’s clearly too long 
 

e. [5 points] A thread that owns the lock as a reader might want to upgrade its ownership of the 
lock to that of a writer without releasing the lock first.  Besides the fact that it’s a waste of 
time, what’s the advantage of not releasing the read lock before re-acquiring it as a writer, 
and how could be the implementation of acquireAsWriter be updated so it can be 
called after acquireAsReader without an intervening release call? 

 
We should accept a huge variety of answers on this problem, because it was intended to 
be open-ended and an opportunity to communicate advanced understanding of 
threading, race conditions, deadlock threat, and concurrency primitives. 
 
One advantage: fewer mutexes and condition_variable_anys need to be waited 
on, so the chance that the threads trying to upgrade the lock are forced to yield the 
processor is much, much smaller. 
 
Another advantage: using the underlying thread (which are pthreads) and its support for 
priorities, you can give threads that are trying to upgrade higher priority, so they get the 
processor before lower priority threads do. 
 
Criteria for Problem 3e, advantage: 2 points 

• Any reasonably stated advantage: 2 points 
• Any vague answer that’s short on detail: 1 point 
• Leaving it blank: 0 points 
 
Implementation idea: change the acquireAsWriter to accept a bool to state whether 
it holds a read lock already. 
 
Better implementation idea: update the rwlock to maintain a set of thread ids (which are 
all the underlying pthread_t’s really are) that hold a read lock, and if the thread trying 
to upgrade finds its thread id in the set, then it knows it’s upgrading.   
 
It can then wait until numReaders == numUpgraders instead of numReaders == 0.  
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Couple this with higher thread priorities and you can ensure that exactly one upgrading 
thread succeeds while all others wait.  It’s true that all of the other upgraders technically 
have a read lock, but they’re blocked inside acquireAsWriter, so they’re not actually 
reading whatever data structure is being accessed, so it’s okay.) 
 
Criteria for Problem 3e, advantage: 3 points 

• Either changing the interface, maintaining a set of thread ids, or something else that 
would allow a thread to know if it’s upgrading: 1 point 

• Conveying any reasonably intelligent approach to implementing the upgrade concept: 
2 points 

 
Solution 4: Primary DNS Servers 

a. Turn to the next page and complete the implementation of buildRequestHandler and 
the second method (you’ll choose the name and the list of parameters) that constructs the 
routine to be executed within the outboundRequests pool. 
 
function<void(void)> DNSServer::buildRequestHandler(int client) { 
  return [this, client] { 
    sockbuf rsb(client); 
    iosockstream rss(&rsb); 
    vector<string> names = pullAllNames(rss); 
    map<string, vector<string>> workerRequests = compileMap(names); 
    semaphore forwardedRequestsCompleted; 
    mutex rssLock; 
    for (const auto& request: workerRequests) { 
      outboundRequests.schedule( 
   buildForwardHandler(rss, rssLock,  

                                request.first, request.second, 
                       forwardedRequestsCompleted)); 

    } 
     
    for (size_t i = 0; i < workerRequests.size(); i++)  
      forwardedRequestsCompleted.wait(); 
    rss << endl; 
  }; 
} 
 

Criteria for Problem 4, buildRequestHandler method: 7 points 

• Declares the shared mutex that protect secondary threads trying to publish partial 
responses to the original connection (or that some other solution is needed to guard 
against race conditions): 1 point 

• Correctly uses the mutex: 1 point 
• Declares a semaphore that can be signaled by the outbound threads so the primary 

thread knows when all secondary requests have responded: 1 point 
• Correctly waits for the semaphore to be signaled once by each of the workers: 2 

points 
• Correctly schedules some helper thunk on outboundRequests for each of the 

secondaries needed: 1 point 
• Aspects of passing by reference to sub-thunk-constructing method are correct: 1 point 
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function<void(void)>  
DNSServer::buildForwardHandler(iosockstream& rss, mutex& rssLock, 
                               const string& address,  
                               const vector<string>& names, 
                               semaphore& parent) { 
  return [&] { 
    int forward = createClientSocket(address, kDefaultPort); 
    sockbuf fsb(forward); 
    iosockstream fss(&fsb); 
    for (const string& name: names) fss << name << endl; 
    fss << endl; 
    lock_guard<mutex> lg(rssLock); 
    while (true) { 
      string response; 
      getline(fss, response); 
      if (fss.fail()) break; 
      rss << response << endl; 
    } 
    parent.signal(); 
  }; 
} 

 

Criteria for Problem 4, buildForwardHandler method: 6 points 

• Correctly captures all of the parameters needed (don’t worry about the syntax—not 
important to get right without g++): 1 point 

• Correctly calls createClientSocket and wraps an iosockstream around its 
return value: 1 point 

• Writes the request to the secondary connection: 1 point 
• Ingests the secondary response and writes it back to the client, but only after ensuring 

that no one else is writing to the same client connection (e.g. using mutex): 2 points 
• Signals the parent that the partial response has been posted to the original client 

socket: 1 point 
 

b. The architecture description is adamant that everything be done off of the main thread by 
making use of inboundRequests.  What’s so important about this type of system that we 
want to get everything off of the main thread as quickly as possible? 
 

Establishing connections with and communicating with remote hosts involves slow 
system calls that could interfere with the main thread’s ability to accept new connections. 
 
Criteria for Problem 4b: 3 points 

• 3 points for clear, correct response 
• 2 points for a clear, correct response with a minor error 
• 1 point for a vague response that could be interpreted as correct 
• 0 points for an incorrect response, a response that’s true but irrelevant, or a response 

that’s clearly too long 
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c. [3 points] Why does the implementation use two ThreadPools instead of one? 
 

The inbound threads could hog the thread pool, preventing any outbound connection 
threads—the threads inbound threads depend on to get their work done—from making 
any progress.  If outbound threads can’t get work done, inbound threads never finish and 
never vacate the thread pool. 
 
Criteria for Problem 4c: 3 points 

• 3 points for clear, correct response 
• 2 points for a clear, correct response with a minor error 
• 1 point for a vague response that could be interpreted as correct 
• 0 points for an incorrect response, a response that’s true but irrelevant, or a response 

that’s clearly too long 
 

d. The translation algorithm used by our DNSServer is very similar to the translation algorithm 
used to translate absolute pathnames (e.g. /usr/class/cs110/bin/submit) to inode 
numbers.  Describe three of these similarities. 

 
• Both turn something human-readable into something more computer-compatible. 
• Both manage a lookup of a number based on the tokenization of a name. 
• Both have well-defined bootstrap locations (well-defined inode number for the root 

directory, well-known IP addresses of the primary servers consulted by initial DNS 
lookup) 

 
Criteria for Problem 4d: 3 points 

• 1 point for each clearly presented answer (there are other good answers, of course; 
only grade the first three.) 
 

e. [3 points] The number of threads running between the two ThreadPools can be as high as 
64, even though there are only two processors on the myth machines.  Why is 64 a 
reasonable number of threads for this type of application?  For what type of application 
would 64 be an absurdly large number of threads? 
 

All threads in this example are network bound, which means they’ll spend the vast 
majority of their time waiting on work to be done off their own CPU.  64 would be too 
large if the threads ran routines that were local-CPU-bound. 
 
Criteria for Problem 4c: 3 points 

• 3 points for clear, correct response 
• 2 points for a clear, correct response with a minor error 
• 1 point for a vague response that could be interpreted as correct 
• 0 points for an incorrect response, a response that’s true but irrelevant, or a response 

that’s clearly too long 
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Solution 5: Short Answers 

a. When implementing proxy, we could have relied on multiprocessing instead of 
multithreading to support concurrent transactions.  Very briefly describe one advantage of 
the multiprocessing approach over the multithreading approach, and briefly describe one 
disadvantage. 
 

• Advantage: private address spaces and memory protection that comes with separate 
processes 

• Disadvantage: difficult to share and synchronize on resources 
 

Criteria for Problem 5a: 2 points 

• Clearly and succinctly presents a genuine advantage: 1 point 
• Clearly and succinctly presents a valid disadvantage: 1 point 

 
b. Recall that virtualization is a systems principle where either many hardware resources are 

made to appear like one, or one hardware resource is made to appear like many.  List four 
distinct forms of virtualization—implemented by the OS, by your assign6 codebase, or by 
some other system—that contribute to the overall implementation of your Assignment 6 
MapReduce system. 
 

• Virtual-to-physical addressing: allows multiple processes to run. 
• Threads as virtual processes: allows mr to manage concurrent connections to workers. 
• AFS grafts independent file systems into to one: makes file sharing trivial 
• Distributed workers: collectively work to produce a result the primary server could 

have generated standalone. 
 

Criteria for Problem 5b: 4 points 

• 1 point for each distinct example that truly contributes to MapReduce. 
 
c. Request-response is one of the fundamental methods different computers (or different 

modules on the same computer) use to communicate and/or exchange information.  One 
computer/module sends a request, and another responds.  List three protocols, modules, or 
systems that rely on request/response that also contribute directly to your MapReduce 
implementation for Assignment 6. 

 
• DNS, SSH, and or custom messaging protocols (can count as two or even all three) 
• AFS 
• system calls like socket, read, bind, etcetera 
 

Criteria for Problem 5c: 3 points 

• 1 point for each distinct, valid example 


