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Winter 2014: CS110 Final Examination 
 

This is a closed book, closed note, closed computer exam.  You have 180 minutes to 
complete all problems.  You don’t need to #include any libraries, and you needn’t 
guard against any errors unless specifically instructed to do so.  Understand that the 
majority of points are awarded for concepts taught in CS110.  If you’re taking the exam 
remotely, you can telephone me at 415-205-2242. 
 
Good luck! 
 

SUNet ID (username): __________________@stanford.edu 
 
Last Name: __________________________________ 
 
First Name: __________________________________ 

 
 
I accept the letter and spirit of the honor code.  I’ve neither given nor received aid on this exam.  
I pledge to write more neatly than I ever have in my entire life. 
 
 
 [signed] __________________________________________________________ 
 
   Score Grader 

1. fork and signal [6] ______  ______ 

2. ThreadPool Mania [25] ______  ______ 

3. Read/Write Locks [15] ______  ______ 

4. Primary DNS Node [25] ______  ______ 

5. Short Answers [9] ______  ______ 

 
Total [80] ______  ______ 
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Relevant Prototypes 
// exceptional control flow and multiprocessing 
pid_t fork(); 
pid_t waitpid(pid_t pid, int *status, int flags); 
typedef void (*sighandler_t)(int sig); 
sighandler_t signal(int signum, sighandler_t handler); // ignore retval 
int execvp(const char *path, char *argv[]); // ignore retval 
 
// thread 
class thread { 
public: 
   thread(...); // first argument is thread routine, its args come afterwards 
   void join();  
}; 
 
class mutex { 
public: 
 mutex(); 
   void lock(); 
   void unlock(); 
}; 
 
class semaphore { 
public: 
   semaphore(int count = 0); 
   void wait(); 
   void signal(); 
}; 
 
class condition_variable_any { 
public: 
   template <typename Mutex, typename Pred>  
  void wait(Mutex& m, Pred pred); 
 void notify_one(); 
 void notify_all(); 
}; 
 
class ThreadPool { 
public: 
 ThreadPool(size_t numThreads); 
   void schedule(function<void(void)>& thunk>; 
   void wait(); 
}; 
 
vector<T> class supports, among other things, 

• void push_back(const T& elem); 
• const T& operator[](size_t index); 
• size_t size() const; 

 
map<Key, Value> class supports, among other things, 

• Value& operator[](const Key& key);  
• size_t size() const; 

 
Create a client connection to a server:  
 int createClientSocket(const string& serverName, unsigned short port); 
 
sockbuf instances constructed via sockbuf::sockbuf(int socket); 
iosockstream instances constructed via iosockstream::iosockstream(sockbuf *sb); 
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Problem 1: fork and signal [6 points] 

Consider the following program: 
 

static pid_t pid; 
static int counter = 0; 
 
static void handlerOne(int sig) { 
  counter += 7000; 
  printf("counter = %d\n", counter); 
} 

 
int main(int argc, char *argv[]) { 
  signal(SIGUSR1, handlerOne); 
  if ((pid = fork()) == 0) { 
    signal(SIGUSR1, handlerTwo); 
    if ((pid = fork()) == 0) { 
      counter += 500; 
      printf("counter = %d\n", counter); 
      signal(SIGUSR1, handlerOne); 
      kill(getppid(), SIGUSR1); 
      exit(0); 
    } 
    counter += 30; 
    printf("counter = %d\n", counter); 
  } 
  counter++; 
  waitpid(pid, NULL, 0); 
  printf("counter = %d\n", counter); 
  return 0; 
} 

 
The above program is capable of printing out something very close to the following: 

 
counter = 500 
counter = 30 
counter = 27031 
counter = 7500 
counter = 27031 
counter = 2 
 

a. [2 points] Which single line of the output is incorrect, and what should it be?  
 
 

b. [2 points] Which two lines might be exchanged by another test run? Why can that happen? 
 
 
 
 

c. [2 points] Which line might be missing altogether from another test run? Why can that happen?  

static void handlerTwo(int sig) { 
  counter += 20000; 
  handlerOne(sig); 
  kill(pid, SIGUSR1); 
} 
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Problem 2: ThreadPool and Office Hours [25 points] 

You are developing a multithreaded C++ program to simulate CS110 office hours at Lathrop 
Library the night before the ThreadPool assignment is due.  All seven CS110 TA’s are there to 
point out your race conditions so you can debug your work.  (In fact, all seven TA’s stay until 
the very last CS110 student leaves—they heart CS110 students.) 
 
All CS110 students arrive at Meyer library with their laptops and what they assume to be a single 
race condition in their otherwise perfect ThreadPool implementations.  Each student waits for 
one of 15 power outlets to become available (because CS110 students have laptops with 
batteries that don’t maintain a charge, so all laptops must be plugged in.)  Once a student plugs 
in, he debugs his code and then selects a random TA to review his work.  The TA counts the 
number of race conditions and shares that number with the student.  If there aren’t any race 
conditions, then the student squeals with delight, runs the CS110 submit script, unplugs his 
laptop, and leaves.  If his code still has one or more race conditions, then he repeats the debug-
for-a-bit-and-get-random-TA-to-help process.  If after 5 rounds the student’s code still has 
problems, he submits what he has, unplugs his laptop, and leaves without squealing. 
 
Each of the seven TA’s waits until a CS110 student gets her attention.  The student shows her his 
assignment, she reviews the code, reports the number of race conditions back to the student, 
grades some tsh assignments, and then waits until another student asks for help.  The very last 
student to leave—whether he successfully arrived at a working ThreadPool or not—wakes all of 
the TA’s, all of whom notice there are no more students and go home.  Note that each of the TA’s 
is capable of reviewing student code and counting race conditions at the same time as other TA’s, 
and the simulation maximizes parallelism by making sure they can do so. 
 
Here are a collection of constants and the main function: 

 
static const size_t kNumTAs = 7; 
static const size_t kNumStudents = 159; 
static const size_t kNumPowerOutlets = 15; 
static const size_t kMaxNumRounds = 5; 

 
int main(int argc, char *argv[]) { 
  thread tas[kNumTAs]; 
  thread students[kNumStudents]; 
  for (size_t id = 0; id < kNumTAs; id++) tas[id] = thread(ta, id); 
  for (thread& s: students) s = thread(student); 
  for (thread& s: students) s.join(); 
  for (thread& t: tas) t.join(); 
  return 0; 
}; 
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Here are a few helper routines that also contribute to the simulation: 
 
static size_t random(); // for student, returns random int from [0, kNumTAs – 1] 
static void debug();  // for student, student debugs race conditions 
static size_t review(); // for ta, review student code, return race condition count 
static void grade();  // for ta, after helping student, sneak in some grading 
static void squeal(); // for student, student squeals when his code works 
static void submit(); // for student, student submits code before leaving 

 
Assume the above helpers are already implemented, are thread-safe, and that you can just call 
them when you need to.  You’re to implement the ta and student thread routines to properly 
synchronize the different activities and efficiently share common resources without introducing 
your own race conditions, deadlock, or busy waiting. 
 
a. [7 points] First, declare your global variables, ensuring that all of them are properly 

initialized.  Because the TA's can help students independently of each other, you need to 
maintain an array of structs—one struct for each TA!  You’ll also need a few isolated 
global variables. 
 
You should only need to make use primitive types, mutexes, and semaphores (no 
condition_variable_anys can be used for this problem.)  For this problem you can just 
note what each of the global variables and struct fields should be initialized to if they 
aren’t properly initialized by default. 
 
static struct ta { 
 // here, list the fields needed to complete the struct definition 
 
 
 
 
 
 
 
 
 
} tas[kNumTAs]; // declares an array of records called tas 
 
// list any additional global variables needed to properly synchronize all threads 
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b. [18 points] Using this and the next page, present your implementation of the ta and 
student thread routines.  Be sure to avoid race conditions, deadlock, and busy waiting. 
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Problem 2: ThreadPool and Office Hours [continued] 
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Problem 3: Read-Write Locks [15 points] 

The read-write lock (implemented by the rwlock class) is a mutex-like class with three 
public methods: 

 
class rwlock { 
 public: 
  rwlock(); 
  void acquireAsReader(); 
  void acquireAsWriter(); 
  void release(); 
 
 private: 
  // object state omitted 
}; 

 
Any number of threads can acquire the lock as a reader without blocking one another.  
However, if a thread acquires the lock as a writer, then all other acquireAsReader and 
acquireAsWriter requests block until the writer releases the lock.  Waiting for the write lock 
will block until all readers release the lock so that the writer is guaranteed exclusive access to 
the resource being protected.  This is useful if, say, you want some kind of mutable data 
structure that only very periodically needs to be modified.  All reads from the data structure 
require you to hold the reader lock (so as many threads as you want can read the data structure 
at once), but any writes require you to hold the writer lock (giving the writing thread exclusive 
access). 
 
The implementation ensures that as soon as one thread tries to get the writer lock, all other 
threads trying to acquire the lock—either as a reader or a writer—block until that writer gets the 
locks and releases it.  That means the state of the lock can be one of three things: 
 

• Ready, meaning that no one is trying to get the write lock. 
• Pending, meaning that someone is trying to get the write lock but is waiting for all the 

readers to finish. 
• Writing, meaning that someone is writing. 

 
The leanest implementation I could come up with relies on two mutexes and two 
condition_variable_anys. 
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Here is the full interface for the rwlock class: 
 
class rwlock { 
 public: 
  rwlock(): numReaders(0), writeState(Ready) {} 
  void acquireAsReader(); 
  void acquireAsWriter(); 
  void release(); 
 
 private: 
  int numReaders; 
  enum { Ready, Pending, Writing } writeState; 
  mutex readLock, stateLock; 
  condition_variable_any readCond, stateCond; 
}; 
 

And here are the implementations of the three public methods: 
 
void rwlock::acquireAsReader() { 
  lock_guard<mutex> lgs(stateLock); 
  stateCond.wait(stateLock, [this]{ return writeState == Ready; }); 
  lock_guard<mutex> lgr(readLock); 
  numReaders++; 
} 
 
void rwlock::acquireAsWriter() { 
  stateLock.lock(); 
  stateCond.wait(stateLock, [this]{ return writeState == Ready; }); 
  writeState = Pending; 
  stateLock.unlock(); 
  lock_guard<mutex> lgr(readLock); 
  readCond.wait(readLock, [this]{ return numReaders == 0; }); 
  writeState = Writing; 
} 
 
void rwlock::release() { 
  stateLock.lock(); 
  if (writeState == Writing) { 
    writeState = Ready; 
    stateLock.unlock(); 
    stateCond.notify_all(); 
    return; 
  } 
 
  stateLock.unlock(); 
  lock_guard<mutex> lgr(readLock); 
  numReaders--; 
  if (numReaders == 0) readCond.notify_one(); 
} 
 

Very carefully study the implementation of the three methods, and answer the questions that 
appear on the next few pages.  Your answers to each of the following questions should be 50 
words or less.  Responses longer than 50 words will receive 0 points.  You needn’t write in 
complete sentences provided it’s clear what you’re saying.  Understand that you don’t just get 
all the points just because everything you say is true. 
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a. [2 points] The implementation of acquireAsReader acquires the stateLock (via the 
lock_guard) before it does anything else, and it doesn’t release the stateLock until the 
method exits.  Why can’t the implementation be this instead? 

 
void rwlock::acquireAsReader() { 
  stateLock.lock(); 
  stateCond.wait(stateLock, [this]{ return writeState == Ready; }); 
  stateLock.unlock(); 
  lock_guard<mutex> lgr(readLock); 
  numReaders++; 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. [2 points] The implementation of acquireAsWriter acquires the stateLock before it 

does anything else and it releases the stateLock just before it acquires the readLock.  
Why can’t acquireAsWriter adopt the same approach as acquireAsReader and just 
hold onto stateLock until the method returns? 
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c. [3 points] Notice that we have a single release method instead of releaseAsReader 
and releaseAsWriter methods.  How does the implementation know if the thread 
acquired the rwlock as a writer instead of a reader (assuming proper use of the class)? 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
d. [3 points] The implementation of release relies on notify_all in one place and 

notify_one in another.  Why are those the correct versions of notify to call in each 
case? 
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e. [5 points] A thread that owns the lock as a reader might want to upgrade its ownership of the 
lock to that of a writer without releasing the lock first.  Besides the fact that it’s a waste of 
time, what’s the advantage of not releasing the read lock before re-acquiring it as a writer, 
and how could be the implementation of acquireAsWriter be updated so it can be 
called after acquireAsReader without an intervening release call? 
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Problem 4: Primary DNS Servers [25 points] 

During the first two weeks of the course, I discussed the how DNS is used to translate domain 
names (e.g. "graph.facebook.com", "cs110.stanford.edu" and 
"www.wikipedia.org") to IP addresses (e.g. "31.13.75.1", "171.67.215.200", and 
"198.35.26.96", respectively.) 
 
The network protocol I’m inventing for this problem requires that all translation requests take the 
following form: 

 
graph.facebook.com 
cs110.stanford.edu 
cs107.stanford.edu 
www.wikipedia.org 
famo.us 
imap.gmail.com 
www.google.com 
math.harvard.edu 
<blank line> 

 
In particular, 1 or more well formed domain names are listed, one per line, to form the entire 
request.  Each line ends in a '\n', and a single blank line (consisting of nothing more than a 
standalone '\n') marks the end of the request. 
 
The server manages all of the translations and publishes a response back over the same 
connection.  For each line in the request there is a corresponding line in the response, which 
might look like this: 
 

graph.facebook.com 
cs110.stanford.edu 
cs107.stanford.edu 
www.wikipedia.org 
famo.us 
www.litterati.org 
imap.gmail.com 
www.google.com 
math.harvard.edu 
<blank line> 
www.wikipedia.org -> 198.35.26.96 
www.litterati.org -> 54.215.147.83 
graph.facebook.com -> 31.13.75.1 
imap.gmail.com -> 74.125.129.109 
www.google.com -> 74.125.239.148 
cs110.stanford.edu -> 74.67.215.200 
cs107.stanford.edu -> 74.67.215.200 
math.harvard.edu -> 140.247.39.51 
famo.us -> 75.101.163.44 
<blank line> 

 
Each line in the response details one of the address translations, and it’s only required that each 
domain name in the request appear somewhere in the response (imposing no order in 
particular.)  Each line of the response ends with '\n', and a blank line marks the end of the 
entire response. 
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The translations are actually managed by a collection of servers in a large distributed system, but 
there is a single primary server that intercepts all requests and forwards each of them on to 
secondary servers that specialize in the translation a certain domain name category (e.g. there’s 
a secondary server that knows how to translate .com domain names, and another that translates 
.edu domain names, and so forth).  Each of these secondary servers in turn forwards their 
requests to third-tier servers (e.g. one that manages all .stanford.edu translations, another 
that manages all .harvard.edu translations, and so forth) until end servers that store a small, 
static map of translations are reached.  These end servers post responses to the requests, and 
those responses—responses which conform to the same response protocol—are collated to post 
aggregate responses to their requesters, etcetera.  All of these servers—primary, secondary, 
tertiary, and end servers—respect the same network protocol. 
 
For this problem, you’re going to complete the implementation of a primary DNS server.  The 
primary DNS server doesn’t store any of its own translations, but it does know the IP addresses 
of all of the secondary servers.  The primary can ingest the entire request, partition them into 
domain name categories (e.g. maintain a vector of .com names that should be forwarded to 
one secondary, a second vector of .edu names that should be forwarded to another 
secondary, and so forth), wait for all responses from all secondaries, and then post a primary 
response that is the accumulation of all secondary responses. 
 
The interface for the DNSServer class—the class that models a primary server—looks like this: 

 
class DNSServer { 
public: 
  DNSServer(); 
  void runServer(); 
 
private: 
  int server; 
  ThreadPool inboundRequests; 
  ThreadPool outboundRequests; 
  struct worker { 
    worker(const string& p, const string& a): pattern(p), address(a) {}  
    regex pattern; 
    string address; 
  }; 
  vector<worker> workers; 

 
  function<void(void)> buildRequestHandler(int client); 
  // other methods that decompose buildRequestHandler 
}; 

 
A server maintains a server socket (which always listens to the host’s port 54321), maintains two 
thread pools (one that manages incoming connections to get them off the main thread as quickly 
as possible, and a second, larger one to maintain the collection of all forwarded requests), and a 
list of workers, which helps identify the IP address of the next-tier server than should handle a 
particular category of domain names. 
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The DNSServer constructor looks like this: 
 
static const size_t kInboundTPSize = 16; 
static const size_t kOutboundTPSize = 48; 
static const unsigned short kDefaultPort = 54321; 
static const int kBacklog = 128; 
 
DNSServer::DNSServer():  
    inboundRequests(kInboundTPSize), outboundRequests(kOutboundTPSize) { 
   
  server = createServerSocket(kDefaultPort, kBacklog); 
  workers.push_back(worker("\\.com$", "8.9.21.140")); // matches .com addresses 
  workers.push_back(worker("\\.net$", "45.45.1.17")); // matches .net addresses 
  // hundreds more... 
} 

 
The workers field manages a collection of regex/IP-address pairs.  When a domain name 
matches a regex, that domain name (along with other names that match the same regex) can be 
forwarded to the secondary server at the corresponding IP address as part of one big distributed, 
divide-and-conquer architecture. 
 
The implementation of runServer is straightforward, and depends on the implementation of 
buildRequestHandler, which constructs and returns a thunk that can be executed off the 
main thread to ingest the response, partition and forward smaller requests on to secondary 
servers, collate all secondary-server responses, and then post a full response to the original 
request.  Here is the implementation of runServer: 

 
void DNSServer::runServer() { 
  while (true) { 
    int client = accept(server, NULL, NULL); 
    inboundRequests.schedule(buildRequestHandler(client)); 
  } 
} 

 
If you’re familiar with ThreadPool::schedule, you know the buildRequestHandler 
method must return a thunk—e.g. a function<void(void)>—that knows how to participate 
in the protocol-compliant discussion taking place over the client connection. 
 
You’re to use the next several pages to complete the implementation of 
buildRequestHandler.  (You’ll notice that I’ve included two helper methods to take care of 
some non-networking-related details.) Your implementation must adhere the following 
requirements: 
 

• the implementation must ingest the entire request (that’s what the supplied 
pullAllNames method does, so you can just call it) 

• the implementation must forward all domain names in the same category (e.g. all domain 
names that end in .edu) as part of a single secondary-server request.  (The provided 
compileMap method takes a list of domain names and partitions them into a map, 
where the keys are secondary server IP addresses, and the values are vectors of domain 
names that should be forwarded to that IP address as part of a single request.) 
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• All forwarded requests must be scheduled on the second ThreadPool called 
outboundRequests to maximize parallelism.  The thunk scheduled on this second 
ThreadPool must be constructed by another helper method.  You can choose the name 
and the list of parameters for this helper method. 

• The function constructed by buildRequestHandler must wait until all secondary 
responses have come back before returning. 

• The function constructed by buildRequestHandler must build the full response to 
the original request, write it to the client connection, and flush the connection before 
returning. 

• Assume createClientSocket is thread-safe and works even when the hostname 
strings are IP address constants like "45.45.1.17". 

• You can iterate of a map<string, vector<string>> using the following syntax: 
 

for (const pair<string, vector<string>>& entry: m) { 
 const string& address = entry.first; 
 const vector<string>& names = entry.second; 
 ... 

 
vector<string> DNSServer::pullAllNames(iosockstream& rss) { 
  vector<string> names; 
  while (true) { 
    string name; 
    getline(rss, name); 
    if (name.empty()) break; 
    names.push_back(name); 
  } 
 
  return names; 
} 
 
map<string, vector<string>> DNSServer::compileMap(const vector<string>& names) { 
  map<string, vector<string>> forwardMap; 
  for (const string& n: names) { 
    for (const worker& s: workers) { 
      if (regex_match(n, s.pattern)) { 
        forwardMap[s.address].push_back(n); 
        break; 
      } 
    } 
  } 
 
  return forwardMap; 
} 

 
a. [13 points] Turn to the next page and complete the implementation of 

buildRequestHandler and the second method (you’ll choose the name and the list of 
parameters) that constructs the routine to be executed within the outboundRequests pool.  
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function<void(void)> DNSServer::buildRequestHandler(int client) { 
  return [this, client] { // note that we’re returning a thunk! that’s okay 
    sockbuf rsb(client); 
    iosockstream rss(&rsb); 
    vector<string> names = pullAllNames(rss); 
    map<string, vector<string>> workerRequests = compileForwardMap(names); 
  // complete the implementation in the space below and on the next page 
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Problem 4: Primary DNS Servers [continued] 
// more space for your implementation of buildRequestHandler 
// and your thunk-constructing helper method 
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Problem 4: Primary DNS Servers [continued] 

Your answers to each of the following questions should be 50 words or less.  Responses longer 
than 50 words will receive 0 points.  You needn’t write in complete sentences provided it’s clear 
what you’re saying.  Understand that you don’t just get all the points just because everything 
you say is true. 
 
b. [3 points] The architecture description is adamant that everything be done off of the main 

thread by making use of inboundRequests.  What’s so important about this type of system 
that we want to get everything off of the main thread as quickly as possible? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
c. [3 points] Why does the implementation use two ThreadPools instead of one? 
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d. [3 points] The translation algorithm used by our DNSServer is very similar to the translation 
algorithm used to translate absolute pathnames (e.g. /usr/class/cs110/bin/submit) 
to inode numbers.  Describe three of these similarities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e. [3 points] The number of threads running between the two ThreadPools can be as high as 
64, even though there are only two processors on the myth machines.  Why is 64 a 
reasonable number of threads for this type of application?  For what type of application 
would 64 be an absurdly large number of threads? 
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Problem 5: Short Answers [9 points] 

Provide answers for each of these three questions: 
 
a. [2 points] When implementing proxy, we could have relied on multiprocessing instead of 

multithreading to support concurrent transactions.  Very briefly describe one advantage of 
the multiprocessing approach over the multithreading approach, and briefly describe one 
disadvantage. 
 
 
 
 
 
 
 
 
 
 

b. [4 points] Recall that virtualization is a systems principle where either many hardware 
resources are made to appear like one, or one hardware resource is made to appear like 
many.  List four distinct forms of virtualization—implemented by the OS, by your assign6 
codebase, or by some other system—that contribute to the overall implementation of your 
Assignment 6 MapReduce system. 
 
 
 
 

 
 
 
 
 
c. [3 points] Request-response is one of the fundamental methods different computers (or 

different modules on the same computer) use to communicate and/or exchange information.  
One computer/module sends a request, and another responds.  List three protocols, modules, 
or systems that rely on request/response that also contribute directly to your MapReduce 
implementation for Assignment 6. 

 


