Winter 2019 March 20" 2019

CS110 Final Examination

This is a closed book, closed note, closed computer exam (although you are allowed to
use your two double-sided cheat sheets). You have 180 minutes to complete all problems.
You don’t need to #include any header files, and you needn’t guard against any errors
unless specifically instructed to do so. Understand that the majority of points are awarded
for concepts taught in CS110. If you're taking the exam remotely, call me at 415-205-
2242 should you have any questions. And if you're taking the exam remotely, please scan
and email a copy of your completed exam to jerry@cs.stanford.edu.

Good luck!

SUNet ID (username): @stanford.edu

Last Name:

First Name:

I accept the letter and spirit of the honor code.

[signed]
Score Grader
1. Forks [10]
2. Threading [18]
3. High Performance, Pre-forking Servers [27]
4. Short Answers [20]

Total [75]

Relevant Prototypes

// filesystem access
int close(int f£d); // ignore retval
int dup(int fd); //

int dup2(int oldfd, int newfd); // ignore retval

int pipe(int fds[]1); // ignore retval

int pipe2(int fds[], int flags); // ignore retval, flags typically O CLOEXEC

#define STDIN_ FILENO 0
#define STDOUT FILENO 1

// exceptional control flow and multiprocessing

pid t fork();

pid t waitpid(pid t pid, int *status, int flags);
int execvp(const char *path, char *argv[]); // ignore retval
int kill(pid_t pid, int signal); // ignore retval

typedef void (*sighandler t)(int sig);

sighandler t signal(int signum, sighandler_ t handler); // ignore retval

int sigemptyset(sigset t *set); // ignore retval

int sigaddset(sigset t *set, int sig); // ignore retval

int sigprocmask(int how, const sigset t *set, sigset t *old); // ignore retval

#define WIFEXITED(status) // macro
#define WIFSTOPPED(status) // macro

class mutex ({
public:
void lock();
void unlock();

}i

class semaphore {

public:
semaphore(int count = 0);
void wait();
void signal();

}i

class condition _variable any {
public:
void wait(mutex& m);
template <typename Pred>
void wait(mutex& m, Pred p);
void notify one();
void notify all();

}i

class ThreadPool {

public:
ThreadPool(size_ t numThreads);
void schedule(Thunk t);
void wait();

template <typename T>
class vector {
public:
size t size() const;
void push back(const T& elem);
T& operator[](size_ t i);
const T& operator[](size_t i) const;

}i

template <typename T>
class list {
public:
bool empty() const;
size t size() const;
void push back(const T& elem);
T& front();
void pop_ front();
}i

template <typename U, typename V>
struct pair {

U first;

V second;

}i

Template <typename Key, typename Value>
class map {
public:
// iter points to pair<Key, Value>
size t size() const;
iter find(const Key& k);
Value& operator[](const Key& k);

Problem 1: Maze Solving with Forks [10 points]

012345678 012345678
0 WWWWWWWWW 0 WWWWWWWWW
1w W W 1 We--W W
2 WWW W WWW 2 WAWW-W WWW
3 W W W 3 W W W
4 WW WWW W 4 W W-WWW W
5WW W W 5WWeWW
6 W WWW W W 6 W WWW-W W
7 W W W 7 W Wee W
8 WWWWWWWEFW 8 WWWWWWW-W

The diagram above-left shows a maze, where W denotes walls, spaces represent open paths,
and the F in the bottom right is the finish. The numbers denote the (x,y) coordinates of the maze,
with the Finish at coordinate (7,8). The diagram on the right shows the same maze with dots (-)
representing the solved maze path from top left to the finish on the bottom right. Maze-solving
can be performed with a depth-first search, which is often accomplished recursively.

Another way to think about solving a maze is to simply check every possible direction (North,
South, East, and West) and fork processes to handle each direction where an open path is
present, with each process keeping track of its own solution path. It is also necessary to keep
track of visited positions, to avoid infinite loops.

For this problem, you will have three types, with the functions or variables you need shown:
enum Location {PATH, WALL, FINISH};

struct coordinate {
int x,y;

}i

class Maze {
public:
Location getVal(coordinate c);

}i

You can assume that the coordinate definition also has the required operator overloads to
enable storage in a container, such as a set.

As a refresher on enums and structs, you can use a Location and getval() as follows:

Location loc = getval({1l,2});
if (loc == PATH) { ..}

Given the above definitions, write the following function:

bool solveMazeFork(Maze &maze, coordinate start, vector<coordinate> &path);

Your function should keep track of the solution path in the path vector, and should create a fork
at each potential path. For example, in the above maze it is obvious that the solution starting
from coordinate (1,1) only has one possible direction (east), so your program would only fork
once to handle that condition, with the fork progressing to coordinate (2,1). The same is true at
coordinate (2,1), which can only progress to (3,1), because (2,1) has already been visited. At
(3,1), the only path is to (3,2) (by going south), and from (3,2) you must go to (3,3). However, at
(3,3), there are two possible directions: (2,3) (by going west), and (3,4) (by going south). At this
point, your function should fork two processes, with one investigating the path at (2,3), and the
other investigating the path at (3,4).

By continuing this process, one of the fork chains will eventually find the finish, at which point
that process should return true. After your function produces all of its children, it should
wait () for them and return false.

Notes:

1. You can assume that there will be only one solution for a maze.

2. Mazes are completely surrounded by walls except for the finish, so there is no need to
check any bounds (i.e., you will always eventually hit a wall in a given direction, unless
it is the finish).

3. Your function can solve the maze within a single while() loop, with the necessary
forking. The only processes that need to continue looping are the forked processes.

4. You should keep track of coordinates you have visited as you visit them, although you do
not need to communicate this information between processes, except at the time a fork is
generated.

5. You may use any std:: containers to hold information needed for this problem (but a
set of visited coordinates is the only extra container my solution uses).

[10 points] Write your function on the next page.

bool solveMazeFork(Maze &maze, coordinate start, vector<coordinate> &path) {

Problem 2: Threaded Election Vote Tallying [20 points]

This problem simulates an election for a national popular vote in the U.S., where there are two
major parties, Democrats (DEM) and Republicans (REP). The program uses threads to distribute
the work.

In the U.S., voting happens at the state level, and is further distributed to the precinct (local)
level on a town-by-town basis. After voting closes for the day, a precinct forwards its votes in a
bundle to the state. At the state level, two people (one from each major political party, DEM and
REP) must tally the votes independently, and agree on the totals (assume only two parties can
accumulate votes).

If the two state vote-counters disagree on the totals, then the counting process continues, until
eventually, the two counters agree on the totals.

Once a precinct's votes have been counted and verified, they will be added to the state total.

Finally, after all of the precincts for a state have added their totals to the state count, a national
counter will add the votes to the national total, and report the current results.

This program models the following:

1. There is a national counter function, countNationalVotes, in a thread that waits for state
totals to come in, at which point it updates the totals and reports on the current total. You will
write most of this function.

2. There are 51 threads, using the stateCount function, that coordinate state voting (50 states
+ Washington, D.C.). Each of the 51 state threads loop through all of their precincts and start a
thread for each with the precinctCount function, using a precinctThreadSem semaphore
to limit the precinct threads. When a state thread has the result from all precincts, it signals
countNationalVotes. You will write part of the stateCount function.

3. The precincts require one representative from each party to count independently. This
happens in parallel with two counter threads, although there are a limited number of counters
per party, and this is handled through two semaphores. If the counters disagree, the process
repeats, until they agree. When they agree, the state totals are updated (and this could happen
simultaneously, so proper locking is necessary). Before returning, the precinct signals the
stateCount function via the precinctThreadSem semaphore to allow another precinct to
begin counting. You will write most of this function.

Important program details:
enum Party { DEM, REP };
The party enum defines the two parties that can collect votes.

To use the Party enum, you can check a vote as follows:
Party vote = <get a vote from a list of votes>
if (vote == DEM) { ... } else { ... }

static semaphore demCounters(kTotalStateCounters);
static semaphore repCounters(kTotalStateCounters);

These two semaphores represent the number of available counters for each party (i.e. the
number of permissions slips is the number of counters that can currently be summoned).

struct stateInfo {
string name;
int numPrecincts;
vector<vector<Party>> rawPrecinctVotes;
int totalDVotes, totalRVotes;

The stateInfo struct holds information about one single state. rawpPrecinctvotes holds a
vector of votes for each precinct. The totals for each party are updated when each precinct is
counted.

static vector<stateInfo> allStatesInfo;

The global al1statesInfo vector holds all the structs for the 51 states. It is global for simplicity
in handling the data in the threads.

struct nationalCount {
mutex listUpdateMutex;
list<stateInfo *> finishedStates;
semaphore waitingStates;

} nationalCount;

The global nationalCount struct is used to coordinate between the state counters and the
national counter. As each state finishes counting, it pushes back a pointer to its stateInfo
variable, which can then be used by the countNationalvotes to update the national data. The
listupdateMutex is used to lock the list when it is updated, and the waitingstates semaphore
is used to signal the national counter that there are states that have finished.

Most of the program is written below. Fill in the parts indicated by

/* student code below here */

and
/* student code above here */

Read all the code before starting to write your own code!

enum Party { DEM, REP };

static const int kNumStates = 51; // 50 + Washington, D.C.
static const int kTotalStateCounters = 10;

static semaphore demCounters(kTotalStateCounters);
static semaphore repCounters(kTotalStateCounters);

struct stateInfo {
string name;
int numPrecincts;
vector<vector<Party>> rawPrecinctVotes;
int totalDVotes, totalRVotes;
}i

static vector<stateInfo> allStatesInfo;

struct nationalCount {
mutex listUpdateMutex;
list<stateInfo *> finishedStates;
semaphore waitingStates;

} nationalCount;

static int readStateInfo();
static void populatePrecinctVotes();

static void countVotes(vector<Party>&rawVotes, Party p, int &totalD, int &totalR);

static void precinctCount(vector<Party>&rawVotes, int stateIndex,
mutex &updateStateTotalsMutex, semaphore &precinctThreadSem) {
// Complete the first part of this function, which creates two independent
// threads that call countVotes, one for DEM with totalDfromD and
// totalRFromD, as references, and the other for REP, with totalDfromR
// and totalRfromR, as references. You should use the demCounters and
// repCounters semaphores to limit the number of counters across all threads.

stateInfo &info = allStatesInfo[stateIndex];

while (true) { // keep counting until both parties agree on vote counts
int totalDFromD, totalRFromD; // DEM vote counts, passed by reference
int totalDFromR, totalRFromR; // REP vote counts, passed by reference

/* student code below here [4 points] */

/* student code above here */

// complete the second part of this function, which updates
// info.totalDVotes and info.totalRVotes in a thread-safe manner,

// and then signals the state counter to allow another precinct to count

if (totalDFromD == totalDFromR && totalRFromD == totalRFromR) {

/* student code below here [5 points] */

/* student code above here */
break;
}

}

}

static void stateCount(int stateIndex) {
// have each party count each precinct, and update total
stateInfo &info = allStatesInfo[stateIndex];
vector<thread> precinctThreads;
mutex updateStateTotalsMutex;
semaphore precinctThreadSem(10);
for (size t i=0; i < info.rawPrecinctVotes.size(); i++) {
precinctThreadSem.wait();
precinctThreads.push back(thread([&info, i, stateIndex,
&updateStateTotalsMutex, &precinctThreadSem]() {
precinctCount (info.rawPrecinctVotes[i], stateIndex,
updateStateTotalsMutex, precinctThreadSem);

)
}

for (thread &t : precinctThreads) t.join();

// at this point, all the states have finished counting
cout << oslock << "Done counting " << info.name << ": D:"
<< info.totalDVotes << " R: " << info.totalRVotes << endl << osunlock;

10

// Complete the rest of this function to allow the countNationalVotes
// thread to update the national count based on the state totals.

/* student code below here [4 points] */

/* student code above here */

cout << oslock << info.name << " has reported its totals." << endl << osunlock;

}

static void countNationalVotes() {
int nationalDVotes = 0;
int nationalRVotes = 0;
cout << oslock << "National counter will update national totals." << endl << osunlock;

for (unsigned int i = 0; i < kNumStates; i++) {
stateInfo *info;

// complete the rest of this function in order to add the state totals to the
// nationalDVotes and nationalRVotes totals. The loop should only proceed
// when signaled by a state that has completed its counting.

/* student code below here [5 points] */

/* student code above here */

11

cout << oslock << "Added " << info->name << " to total." << endl << osunlock;
cout << oslock << "Current Totals: " << "D: " << nationalDVotes <<
", R: " << nationalRVotes << endl << osunlock;
}
cout << oslock << " Final Totals: " << "D: " << nationalDVotes <<
", R: " << nationalRVotes << endl << osunlock;

}

int main(int argc, const char *argv[]) {
int numStates = readStateInfo();
populatePrecinctVotes();

thread national (countNationalVotes);
vector<thread> states_th;

// start 51 threads, one for each state

for (int i = 0; i < numStates; i++) {
states_th.push back(thread(stateCount, 1i));

}

for (thread& state : states_th) {
state.join();

}
national.join();

return 0;

12

Problem 3: High Performance, Pre-forking Servers [27 points]

Many servers are coded to an architecture that pre-forks a collection of worker executables to
handle individual client requests. For the purposes of this problem, each worker executable is
required to self-halt until instructed to proceed, read single-line requests from standard input,
publish single-line responses to standard output, and repeat until its standard input reads EOF, at
which point it exits. A simplified version of Assignment 3’s factor.py, presented below,
satisfies this requirement.

while True:
os.kill(os.getpid(), signal.SIGSTOP)
try: num = int(raw_input())
except EOFError: break
response = factorization(num) # returns a single line with no \n
print response # prints response with terminating \n
sys.stdout.flush() # force a flush

Of course, there’s no reason to assume a server’s workers are always factor.py. They can be
any program that bows to the requirements.

while (true) {
<self-halt>
<read one-line request from stdin>
if (<unable-to-read-data-ever-again>) break;
<process request, generate one-line response>
<publish to stdout, and flush>

}

For this problem, you should assume that every single worker executable is implemented using
the above structure.

When launched, the server spawns off (i.e. pre-forks) a specific number of workers and
maintains two pipes on behalf of each: a supply descriptor that leads to the worker’s standard
input, and a ingest descriptor that pulls from the worker’s standard output. Every time the server
accepts a new connection, the server schedules a thread to execute within a thread pool, and
that scheduled thread reads a one-line request from the client, forwards it verbatim to an
available worker, waits for the worker to handle the request, receives the one-line response from
the worker, and forwards that response back to the client. It's similar to your proxy assignment,
except that requests and responses are always one line, and everything—the server and all its
workers—run on the same machine.

One additional feature! The server is prepared to spawn additional workers—up to a maximum
number—if the number of client connections seems high. The server is also prepared to shut
down workers when the vast majority of them are idle. This feature is a gesture to how a server
might self-tune so that number of workers goes up and down with the perceived client traffic.

The main function for this server is nothing more than a wrapper around some command line
parsing, a server configuration, and a method call instructing the server to loop forever. Check

13

out the prefork-server.cc file below (the implementation of parseCommandLine has
been omitted, but you can intuit what it must do):

static const short kDefaultPort = 24680;
static const size t kNumCPUs = sysconf(_SC_NPROCESSORS ONLN) ;
int main(int argc, char *argv[]) {
short port = kDefaultPort;
size t low kNumCPUs, start = 2 * low, high = 4 * low;
argv += parseCommandLine(argc, argv, port, start, low, high);
PFServer server(port, start, low, high, argv); // argv now addresses worker argv
server.run();
return 0;

Assuming a working PFServer constructor and run method, the following would launch a
server with 12 workers with the guarantee that even though it may add or shut down workers,
the number will always be between 8 and 32, inclusive:

myth51:$./prefork-server --port 24680 --low 8 --start 12 --high 32 ./factor.py
Server listening to port 24680.

Until I hit ctrl-C, my server is running on myth51, bound to port 24680. That means | can use
my own laptop to connect to myth51:24680 and play the role of client, as with:

jerry$ telnet myth51.stanford.edu 24680
Trying 171.64.15.23...

Connected to myth51.stanford.edu.
Escape character is '"]'.

123456789

123456789 = 3 * 3 * 3607 * 3803
Connection closed by foreign host.
jerry$

If I'm the only one hitting my server and | manually connect four or more times (and I'm slow
about it), I'll see evidence that my server self-detects its unpopularity and shuts down workers.

myth51:$./prefork-server --port 24680 --low 8 --start 12 --high 32 ./factor.py
Server listening to port 24680.

Lots of idle workers... shutting one down.
Lots of idle workers... shutting one down.
Lots of idle workers... shutting one down.
Lots of idle workers... shutting one down.

If I now write a multithreaded program that flash mobs the server with a huge number of
simultaneous requests, it begins to add more workers, up to a maximum.

myth51:$./prefork-server --port 24680 --low 8 --start 12 --high 32 ./factor.py
Server listening to port 24680.

Lots of idle workers... shutting one down.
Lots of idle workers... shutting one down.
Lots of idle workers... shutting one down.
Lots of idle workers... shutting one down.
Not enough workers... spawning one more.
Not enough workers... spawning one more.

// 22 more lines like the one above

14

For this problem, you're given a full class declaration and a partial implementation. Your job is
to provide implementations for those helper methods we’ve not provided.

The definition of the PFServer class is presented below. You won’t need to add anything to
the . hfile (in fact, you’re not permitted to), but you'll provide implementations for the last four
private methods, the prototypes of which are highlighted in bold.

class PFServer {
public:

}

PFServer(short port, size t start, size t low, size_ t high, char *argv[]);
void run();

private:

4

short port;
size t start, low, high;
char **argv;

int server;

std::map<pid t, std::pair<int, int>> bridges;
std::1list<pid t> available;

std: :mutex m;

semaphore numAvailable;

ThreadPool pool;

void spawnInitialWorkers();
void optimizeNumWorkers();
bool shouldSpawnWorker();
bool shouldShutdownWorker();

void spawnWorker();

void handleRequest(int client);
void shutdownWorker();

void markWorkersAsAvailable();

The port, start, low, high, argv, and server fields should be self-explanatory once you
see the code | provide. As for the others:

The bridges maps stores all of the worker pids, and associates each pid to the supply
and ingest descriptors described earlier.

The available list maintains a FIFO queue of pids, each of which identifies some
worker that’s self-halted and staged to be fed a single-line request from the server once its
time comes.

m is used to guard access to all the private data members that might be accessed by
two or more threads at the same time.

numAvailable wraps as many permission slips are there are pids in available.
pool is used the same way threads pool were used for Assignments 7 and 8—to handle
as many incoming requests as possible while allowing the main thread to accept
connections with minimal interruption.

15

You'll be implementing the four helper functions you see in bold.

Presented below are the implementations of the class entries we’ve provided. We omit the
implementations of blockSignals and unblockSignals, since you can infer what they
must do without having to see code for them. We rely on a new version of
createServerSocket to create a server socket that's automatically closed across execvp
boundaries. And we rely on a second version of accept—you’ll see it as accept4—because
that one can be called, as | have called it, to return sockets that also auto-close at execvp.

PFServer: :PFServer (short port, size t start, size t low, size t high, char *argv[]):

port(port), start(start), low(low), high(high), argv(argv), pool(high)
signal (SIGCHLD, [this](int unused) { markWorkersAsAvailable(); });
server = createServerSocket(port);
cout << "Server listening to port " << port << "." << endl;

}

void PFServer::run() {
spawnInitialWorkers();
while (true) {
int client = accepté4(server, NULL, NULL, SOCK_CLOEXEC);
pool.schedule([this, client] { handleRequest(client); });

}

void PFServer::spawnInitialWorkers() {
blockSignals ({SIGCHLD});
for (size t i = 0; i < start; i++) spawnWorker();
unblockSignals ({SIGCHLD});

}

bool PFServer::shouldSpawnWorker () {
return available.empty() && bridges.size() < high;
} // if all workers are working, create one more (up to a limit)

bool PFServer::shouldShutdownWorker () {
return bridges.size() > low && bridges.size() - available.size() ==
} // if all other workers seem to be idle, kill one off

void PFServer::optimizeNumWorkers() {
if (shouldSpawnWorker()) {

cout << "Not enough workers... spawning one more." << osunlock;
spawnWorker () ;

} else if (shouldShutdownWorker()) {
cout << "Lots of idle workers... shutting one down." << endl;

shutdownWorker () ;

{

d.

16

[7 points] Implement the spawnWorker method, which creates a new child executable
running whatever the argv data field stores. spawnWorker should initialize two
descriptors—one that feeds the new worker’s standard input, and a second that pulls from
the new worker’s standard output—and ensure the descriptor pair is properly catalogued in
bridges. Your implementation should assume that SIGCHLD is being blocked and that no
other threads are capable of modifying any of the server’s private data fields. Don’t
orphan any descriptors and configure your descriptors so their reference counts are never
artificially inflated. Your implementation should not modify the available queue, since
you need to wait for the worker to self-halt and trigger your SIGCHLD handler—you'll
implement that next—to mark it at available. You may not use any subprocess function
written in lecture or in an assignment unless you reimplement it and adapt it to the needs of
this problem.

void PFServer::spawnWorker() {

b.

17

[6 points] Next, implement the markWorkersAsAvailable method, which was installed
as part of the SIGCHLD handler in the PFServer constructor. You may assume no other
threads have a lock on m when this executes, so that you can freely update private data
members as needed. Your SIGCHLD handler will be triggered to interrupt the currently
executing thread whenever child processes halt, continue, or exit; so be sure your handler
works for all three types of state changes.

void PFServer::markWorkersAsAvailable() {

C.

18

[4 points] Next up is shutdownWorker, which gets called when optimizeNumWorkers
(which we provided) decides the server has too many idle workers and wants to shut one
down. Your implementation should assume that SIGCHLD is blocked and that the lock on m
is held by the thread calling shutdownWorker. Your implementation should pluck some
pid from the available queue, prompt that worker to exit gracefully, close down any
descriptors that are no longer relevant, and remove any trace of the worker from the
bridges map.

void PFServer::shutdownWorker() {

d.

19

[4 points] To simplify the implementation of handleRequest, you're going to implement a
short utility function, and you're going to implement it two different ways. The prototype of
the function looks like this:

static void forwardBytes(int source, int sink);

Its implementation is easy to describe: Keep reading characters from source and forwarding
them to the sink until you read and forward a newline character. Your implementation
should work regardless of how long the sequence of bytes ends up being.

You're to implement it two different ways, just to show us you have a handle on low-level
I/O and also on the sockstream classes used in Assignments 7 and 8.

e [2 points] The first way should use low-level /O, exposed read and write calls, and
a character buffer of size 8 to shovel bytes from source to sink. You should not
close source or sink.

static void forwardBytes(int source, int sink) {

e [2 points] The second way should rely on sockbufs and iosockstreams to do
precisely the same thing. The implementation is short, though it’s tricky, since you
need to ensure that source and sink aren’t closed at the end. This implementation
should not include any exposed calls to read or write.

static void forwardBytes(int source, int sink) {

e.

20

[6 points] Finally, present the implementation of handleRequest, which waits for a worker
to become available, enlists that worker, and managed all communication between the
client and the worker to fully service the client. After you've selected a worker and removed
it from the queue (but before you start tunneling bytes back and forth between the client and
the worker), you should call optimizeNumWorkers to quickly decide if the number of
workers should be increased or decreased by one.

Your implementation of handleRequest should guard against race conditions and
deadlock, but it should also make sure to maximize parallelism without holding locks or
blocking signals longer than necessary. Your implementation will make use of your
forwardBytes function from part d.

void PFServer::handleRequest(int client) {

21

Problem 4: Short Answers [20 points]

Unless otherwise noted, your answers to the following questions should be at most 75 words.
Responses conspicuously longer than 75 words will receive 0 points. You needn’t write in
complete sentences provided it's clear what you’re saying. Full credit will only be given to the
best of responses. Just because everything you write is true doesn’t mean you get all the points.

a. [2 points] Descriptors can be configured so they are automatically closed when execvp is
called, and whether or not a descriptor is self-closing on execvp boundaries is tracked using
just one bit of information. Where is that bit stored? In the descriptor table entry? Or in the
open file table entry that’s referenced by the descriptor? Briefly defend your answer.

b. [2 points] The vEork system call has the same effect as fork, except that the child process
created by vfork cannot modify any variables whatsoever, and the child process must
either lead to a call to _exit (a special form of exit) or one of the exec* functions (e.g.
execvp, execlp, execve, etc). vEork can be used in instead of fork to boost the
performance of time- and resource-sensitive applications, because it doesn’t create a new
virtual address space for the child until execvp is called.

Explain why the implementation of vfork (as opposed to fork) necessarily suspends the
parent process until the child process has either terminated or called one of the exec*
functions.

22

c. [2 points] Your farm program Assignment 3 was careful to use sched_setaffinity to
assign each of eight workers to run on a dedicated CPU. Briefly describe the benefits of
doing this and why it leads to optimal execution speed.

d. [2 points] The Assignment 4 specification was clear that you needed to support pipelines
(e.g. echo "123" | conduit --count 4 --delay 1 | wc). The assignment
specification, however, didn’t ask that you do anything special if one of the named programs
(e.g. conduit) couldn’t be executed (because it's missing, or it's there but it’s not
executable, or it is but you don’t have permission to execute it).

Describe how you could use the ptrace system call to ensure that all individual commands
successfully execvp before allowing them all to continue, but terminating them all without
allowing any to continue beyond their execvp calls if one or more execvp calls fail.

e. [2 points] The process scheduler relies on runnable and blocked queues to categorize
processes. How exactly does this categorization lead to better CPU utilization?

f.

23

[6 points] When two or more threads are blocked on a call to mutex: : lock, any one of
them might be selected to acquire the lock once the mutex becomes available. Restated,
the mutex isn't obligated to maintain any sort of FIFO queue to ensure the thread waiting
longer than any other is chosen first.

A strong mutex, or a smutex, ensures that blocked threads are woken up in the same order

they are blocked. There are many smutex implementations, and one that relies on a queue

of condition_variable_anys is presented below (interface on the left, implementation

on the right).

ght) // smutex.cc

void smutex::lock() {
condition_variable any cv;
lock guard<mutex> lg(m);
queue.push back(&cv);
cv.wait(m, [this, &cv] {

// smutex.h
class smutex {
public:
void lock();
void unlock();

return queue.front() == &cv;
- })i

rivate:
pmutex m; queue.pop_ front();

list<condition_variable any *> queue; }
bi void smutex::unlock() {

. . lock guard<mutex> lg(m);

Study the implementation of the smutex if (lqueue.empty())
methods and answer the following questions: queue.front()->notify_all();

}

e [2 points] Does the implementation guarantee that a thread calling smutex: : lock
before any others gets the lock on the smutex first? Why or why not?

e [2 points] Can the call to notify_all be replaced with a call to notify_ one without
impacting functionality? Very briefly defend your answer.

e [2 points] Can the queue.pop_front () line in smutex: :lock () be moved so that
it’s the last line in smutex: :unlock () instead? Why or why not?

24

[2 points] A good rule of thumb is that the number of threads used for a CPU-bound
computation should equal the number of CPUs, whereas the number of threads used for an
I/O-bound computation should be two to four times the number of CPUs. Explain why.

8.

h. [2 points] During the last CS110 lecture, Chris introduced the epol1 suite of functions—
epoll_create, epoll_ctl, and epoll_wait—as a better way to implement
nonblocking servers to handle thousands of client requests simultaneously. However,
epoll_wait is a slow system call, counter to the idea of nonblocking. Why, then, is using

epoll_wait a good thing?

