
CS110 Spring 2021
Lecture 6: More on Multiprocessing

Principles of Computer Systems
Stanford University, Dept. Of Computer Science

Lecturer: Roslyn Michelle Cyrus
Content adapted from material by Jerry Cain.

Diagrams and pipe content by Roslyn.

1
Version 2

Roslyn Michelle Cyrus | Stanford University

● More about waitpid
● Starting executables from disk with execvp
● Freeform communication between two processes using pipes

2

Lecture Overview

● My data flow blog post

Reading

Remember to download lecture slides! They usually have more slides/examples than
I’m able to cover in class.

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University

● Today's lecture examples reside within:
/usr/class/cs110/lecture-examples/processes.
○ First ssh into a myth machine (ssh yourusername@myth.stanford.edu). When prompted

for your password, it is normal for the text not to appear as you enter your password.
Once logged onto a myth machine, cd into the above directory.

○ To get started, type:
git clone /usr/class/cs110/lecture-examples cs110-lecture-examples
at the command prompt to create a local copy of the master.

○ Each time I mention there are new examples (or whenever you think to), descend into
your local copy and type git pull. Doing so will update your local copy to match
whatever the master has become.

3

Accessing Code Examples

mailto:yourusername@myth.stanford.edu

Roslyn Michelle Cyrus | Stanford University 4

Fork-puzzle Recap

Roslyn Michelle Cyrus | Stanford University 5

Recap: Waiting for Children to Finish

pid_t waitpid(pid_t pid, int *status, int options); // returns child PID if ok, 0 if WNOHANG, -1 if error

● Synchronization between parent and child can be done by using the system call waitpid. It can
be used to temporarily block a process until a child process terminates or stops.

● The first argument specifies the wait set, which for the moment is just the ID of the child process
that needs to complete before waitpid can return.

● The second argument supplies the address of an integer where termination information can be
placed (or we can pass in NULL if we don't care for the information).

● The third argument is a collection of bitwise-or'ed flags we'll study later. For the time being, we'll
just go with 0 as the required parameter value, which means that waitpid should only return
when a process in the supplied wait set exits.

● The return value is the pid of the child that exited, or -1 if waitpid was called and there were no
child processes in the supplied wait set.

Roslyn Michelle Cyrus | Stanford University

Consider the following program, which is more representative of how fork really gets used in practice
(full program, with error checking, is right here):

6

Waiting For Children to Finish
Reading: B&O’s Exceptional Control Flow chapter, section 4

int main(int argc, char *argv[]) {

 printf("Before.\n");

 pid_t pid = fork();

 printf("After.\n");

 if (pid == 0) {

 printf("I am the child, and the parent will wait up for me.\n");

 return 110; // contrived exit status

 } else {

 int status;

 waitpid(pid, &status, 0);

 if (WIFEXITED(status)) {

 printf("Child exited with status %d.\n", WEXITSTATUS(status));

 } else {

 printf("Child terminated abnormally.\n");

 }

 return 0;

 }

 }

● The parent process correctly waits for
the child to complete using waitpid.

● The parent lifts child exit information out
of the waitpid call, and uses the
WIFEXITED macro to examine some
high-order bits of its argument to
confirm the process exited normally, and
it uses the WEXITSTATUS macro to
extract the lower eight bits of its
argument to produce the child return
value (which is 110 as expected).

● The waitpid call also donates child
process-oriented resources back to the
system.

http://cs110.stanford.edu/examples/processes/separate.c

Roslyn Michelle Cyrus | Stanford University 7

Reaping Zombie Processes
● When a process terminates for any reason, the kernel doesn’t remove it from the system

immediately. The terminated process is kept around until it is reaped (collected and cleaned up) by
its parent. Thus the waitpid call donates child process-oriented resources back to the system,
allowing the process’s entry in the process table to be removed by the kernel.

○ When the parent reaps the terminated child, the kernel passes the child’s exit status to the
parent (to be processed by the waitpid call) and then discards the terminated process (at
which point it ceases to exist).

● If waitpid isn’t called, the terminated children processes become zombies. A zombie is a
terminated process that has not yet been reaped by its parent. You can think of zombies as
orphans.

○ When a parent process terminates without reaping its children, the kernel has the init
process “adopt” and reap the parent’s orphaned children processes.

○ init (which has process ID 1) is the ancestor of every process: it is created by the kernel when
the system boots and it never terminates (note: init is now systemd on most systems).

● Long-running programs (like shells) should reap their zombie children since zombies still consume
memory resources even though they are no longer running.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University 8

Reaping Zombie Processes
● Here’s an example of a program that doesn’t reap its child (like earlier fork examples from the last

lecture).

int main(int argc, char *argv[]) { // zombie.c
 printf("Currently running process: %d\n", getpid());

 pid_t pid = fork();
 assert(pid >= 0);

 if (pid == 0) { // in child
 printf("Child process (pid=%d) exiting.\n", getpid());
 exit(0); // terminate child
 } else {
 // in parent, which doesn't reap its child,
 // so while parent runs for a minute, the child
 // is in a zombie state once the child exits.
 // The child will be adopted by init when
 // the parent process ends.

 sleep(60);
 }
 return 0;
}

● return is an instruction of the language that
returns from a function call.

● exit is a system call (not part of the language) that
terminates the current process.

● The & runs the program in the background.
● The sleep call is there to give us time to check that

the child was terminated but not reaped. Without it,
the init process would reap the process quicker
than we could check for a zombie process.

myth60$./zombie &
[1] 1613
Currently running process: 1613
Child process (pid=1614) exiting.
myth60$ ps -o pid,state,command | grep zombie
1613 S ./zombie
1614 Z [zombie] <defunct>
1626 S grep zombie

Roslyn Michelle Cyrus | Stanford University 9

Reaping Zombie Processes
● Here’s an example of a program that does reap its child (using waitpid).

int main(int argc, char *argv[]) { // zombie_reaped.c
 printf("Currently running process: %d\n", getpid());

 pid_t pid = fork();
 assert(pid >= 0);

 if (pid == 0) { // in child
 printf("Child process (pid=%d) exiting.\n",
getpid());
 exit(0); // terminate child
 } else { // in parent, which reaps its child
 int status;
 waitpid(pid, &status, 0);

 sleep(60);
 }

 return 0;
}

● The child was successfully reaped by the
parent, so there’s no zombie process running.

myth60$./zombie_reaped &
[1] 1896
Currently running process: 1896
Child process (pid=1898) exiting.

myth60$ ps -o pid,state,command | grep zombie
1896 S ./zombie_reaped
1938 S grep zombie

Question: if we moved the sleep(60) to the
child’s code (before its exit call), what states
would you expect the parent to be in within that
~minute that the child is sleeping?

Roslyn Michelle Cyrus | Stanford University

● Answer: the parent and child would both be in the waiting state. To be clear, waitpid does not influence
the scheduling of processes; calling waitpid on a process does not mean that the process gets a higher
priority. waitpid simply blocks the parent process until the specified child process has finished executing.

10

Process Life Cycle Recap

Roslyn Michelle Cyrus | Stanford University 11

More Details About The waitpid Arguments

Roslyn Michelle Cyrus | Stanford University 12

Waitpid: the pid argument

● As shown in the previous example, by default (when options = 0), waitpid suspends execution of
the calling process until a child process in its wait set terminates.

● If a process in the wait set has already terminated at the time of the call, then waitpid returns
immediately.

● waitpid returns the pid of the terminated child that caused waitpid to return, at which point the
terminated child has been reaped and removed from the system by the kernel (it is removed from
the process table).

● The wait set depends on the pid argument:

○ pid > 0: the wait set is the single child process that has that pid

○ pid = -1: the wait set is all of the parent’s child processes

○ pid = 0: any child process whose process group ID is equal to that of the calling process.

○ pid < -1: any child process whose process group ID is equal to the absolute value of pid.

Reading: B&O’s Exceptional Control Flow chapter, section 4

pid_t waitpid(pid_t pid, int *status, int options); // returns child PID if ok, 0 if WNOHANG, -1 if error

Roslyn Michelle Cyrus | Stanford University 13

Waitpid: the status argument

If the status argument isn’t NULL, then waitpid encodes the child’s status information in the value pointed to by
status. Several macros are defined for interpreting status:

Reading: B&O’s Exceptional Control Flow chapter, section 4

pid_t waitpid(pid_t pid, int *status, int options); // returns child PID if ok, 0 if WNOHANG, -1 if error

WIFEXITED(status) Returns true if the child terminated normally via a call to exit or a return.

WEXITSTATUS(status) Returns the exit status of a normally terminated child (only defined if
WIFEXITED(status) returned true).

WIFSIGNALED(status) Returns true if the child process terminated because of a signal that wasn’t caught.

WTERMSIG(status) Returns the number of the signal that caused the child process to terminate (only
defined if WIFSIGNALED(status) returned true).

WIFSTOPPED(status) Returns true if the child that caused the return is currently stopped.

WSTOPSIG(status) Returns the number of the signal that caused the child to stop (only defined if
WIFSTOPPED(status) returned true).

WIFCONTINUED(status) Returns true if the child process was restarted by receipt of a SIGCONT signal.

Roslyn Michelle Cyrus | Stanford University 14

Waitpid: the options argument

● Recall that the default behavior of waitpid (when options is 0) is to suspend execution of the
calling process until a child process in its wait set terminates.

● To change the default behavior, set options to ORed combinations of the following constants:

Reading: B&O’s Exceptional Control Flow chapter, section 4

pid_t waitpid(pid_t pid, int *status, int options); // returns child PID if ok, 0 if WNOHANG, -1 if error

WNOHANG Instead of waiting, return immediately (with a return value of 0) if none of the child processes in the
wait set has terminated yet. Useful if you want to keep doing useful work while waiting for a child to
terminate.

WUNTRACED Suspend execution of the calling process until a process in the wait set becomes either terminated OR
stopped. Return the PID of the child that caused the return. Useful when you want to check for both
terminated and stopped children.

WCONTINUED Suspend execution of the calling process until a running process in the wait set is terminated or until a
stopped process in the wait set has been resumed by the receipt of a SIGCONT signal.

Roslyn Michelle Cyrus | Stanford University 15

Waitpid “errors”

● If the calling process has no children, then waitpid returns -1 and sets errno to ECHILD.

● If waitpid was interrupted by a signal, then it returns -1 and sets errno to EINTR.

Reading: B&O’s Exceptional Control Flow chapter, section 4

pid_t waitpid(pid_t pid, int *status, int options); // returns child PID if ok, 0 if WNOHANG, -1 if error

Wait

● This is a simpler version of waitpid.

○ wait(&status) is the same as waitpid(-1, &status, 0).

pid_t wait(int *status);

Note: waitpid can only be called on direct child processes (not parent processes, or grandchild
processes, or anything else).

Roslyn Michelle Cyrus | Stanford University 16

Bonus: Another waitpid example
● This next example is more of a brain teaser, but it illustrates just how deep a clone the process created by

fork really is (full program, with more error checking, is right here).

int main(int argc, char *argv[]) { // parent-child.c

 srandom(time(NULL)); // for changing random number seed

 printf("I'm unique and just get printed once.\n");

 pid_t pid = fork();

 bool isparent = pid != 0;

 if ((random() % 2 == 0) == isparent) sleep(1); // force exactly one of the two to sleep

 if (isparent) waitpid(pid, NULL, 0); // parent shouldn't exit until child has finished

 printf("I get printed twice (this one is being printed from the %s).\n",

 isparent ? "parent" : "child");

 return 0;

}

● The code emulates a coin flip to get exactly one of the two processes to sleep for a second, which is more
than enough time for the child process to finish. Since the seed is the same in both the parent and child, both
processes will get the same result from the random call! This is how we ensure that only one process sleeps.

● The parent waits for the child to exit before it allows itself to exit.
● The final printf gets executed twice. Who will always execute it first?

○ The child, because the parent is blocked in its waitpid call until the child executes everything.

http://cs110.stanford.edu/examples/processes/parent-child.c
https://en.wikipedia.org/wiki/Random_seed

Roslyn Michelle Cyrus | Stanford University 17

What if a process has more than one child?

Roslyn Michelle Cyrus | Stanford University 18

Reaping Several Children
● If a parent calls fork multiple times, it should reap all of the child processes (via waitpid) once they exit.
● If we want to reap processes as they exit without concern for the order they were spawned, then this does

the trick (full program checking right here):

int main(int argc, char *argv[]) { // reap-as-they-exit.c
 for (size_t i = 0; i < 8; i++) {
 if (fork() == 0) exit(110 + i);
 }
 while (true) {
 int status;
 pid_t pid = waitpid(-1, &status, 0);
 if (pid == -1) { assert(errno == ECHILD); break; }
 if (WIFEXITED(status)) {
 printf("Child %d exited: status %d\n", pid, WEXITSTATUS(status));
 } else {
 printf("Child %d exited abnormally.\n", pid);
 }
 }
 return 0;
}

This calls waitpid a total of 9 times
(it returns child PIDs 8 times, then
returns -1 to indicate that there are
no remaining children).

Note that we feed a -1 as the first
argument to waitpid. That -1 states
that we want to hear about any
child as it exits, and pids are
returned in the order their
processes finish.

Eventually, all children exit and
waitpid correctly returns -1 to signal
there are no more processes under
the parent's jurisdiction.

http://web.stanford.edu/class/cs110/examples/processes/reap-as-they-exit.c

Roslyn Michelle Cyrus | Stanford University

● When waitpid returns -1, it sets a global variable called errno to the constant ECHILD to signal that
waitpid returned -1 because all child processes have terminated. That's the "error" we want.

● FYI: the myth machines were updated recently, so running this program on a myth likely will result
in the children being reaped in the order they were created! Try running the program on a rice
machine (connect via ssh yourusername@rice.stanford.edu) to see different behavior.

19

Reaping Several Children (continued)
rice11$./reap-as-they-exit
Child 1209 exited: status 110
Child 1210 exited: status 111
Child 1211 exited: status 112
Child 1216 exited: status 117
Child 1212 exited: status 113
Child 1213 exited: status 114
Child 1214 exited: status 115
Child 1215 exited: status 116
rice11$

rice11$./reap-as-they-exit
Child 1453 exited: status 115
Child 1449 exited: status 111
Child 1448 exited: status 110
Child 1450 exited: status 112
Child 1451 exited: status 113
Child 1452 exited: status 114
Child 1455 exited: status 117
Child 1454 exited: status 116
rice11$

Roslyn Michelle Cyrus | Stanford University 20

Reaping Several Children In Order
● We can do the same thing we did in the first program, but monitor and reap the child processes in the

order they are forked (full program with error checking right here):

int main(int argc, char *argv[]) { // reap-in-fork-order.c
 pid_t children[8];
 for (size_t i = 0; i < 8; i++) {
 if ((children[i] = fork()) == 0) exit(110 + i);
 }
 for (size_t i = 0; i < 8; i++) {
 int status;
 pid_t pid = waitpid(children[i], &status, 0);
 assert(pid == children[i]);
 assert(WIFEXITED(status) && (WEXITSTATUS(status) == (110 + i)));
 printf("Child with pid %d accounted for (return status of %d).\n",
 children[i], WEXITSTATUS(status));
 }
 return 0;
}

http://web.stanford.edu/class/cs110/examples/processes/reap-in-fork-order.c

Roslyn Michelle Cyrus | Stanford University

● This version spawns and reaps processes in some first-spawned-first-reaped (FSFR) manner.
● In general, the child processes aren't required to exit in FSFR order.
● In theory, the first child could finish last, and the reap loop could be held up on its very first iteration until

the first child really is done. But in our example, the process zombies are reaped in the order they were
forked.

● Above is a sample run of the reap-in-fork-order executable. Only the pids change between runs.

21

Reaping Several Children In Order (continued)
myth60$./reap-as-they-exit
Child with pid 4689 accounted for (return status of 110).
Child with pid 4690 accounted for (return status of 111).
Child with pid 4691 accounted for (return status of 112).
Child with pid 4692 accounted for (return status of 113).
Child with pid 4693 accounted for (return status of 114).
Child with pid 4694 accounted for (return status of 115).
Child with pid 4695 accounted for (return status of 116).
Child with pid 4696 accounted for (return status of 117).
myth60$

Roslyn Michelle Cyrus | Stanford University 22

Recap: Why Create Processes?
● So, now we know how to create processes… but why would we do that in the first place? There are

three major reasons:
○ performance (ability to use multiple CPUs)
○ security (isolation of possibly sensitive components of an application)
○ starting executables from disk

Enter execvp!

Roslyn Michelle Cyrus | Stanford University 23

About execvp
● It is possible to have a forked process

simply do other work that you program. In
other words, you have two processes,
each doing work concurrently, and you've
programmed the code for both
processes. These are the examples we've
seen so far.

● However, this is actually not the most
common use for fork. Most often, a
programmer wants to run a completely
separate program, but wants to maintain
control over the program, and may also

Reading: B&O’s Exceptional Control Flow chapter, section 4

(quite frequently) want to send data to the program through stdin and capture the output of the
program through its stdout.

● E.g. the shell program: when you type a command, it executes that program and waits for it to end.

Roslyn Michelle Cyrus | Stanford University 24

About execvp (continued)

Enter the execvp system call!
● execvp effectively reboots a process to run a different program from scratch. Here is the prototype:

○ path identifies the name of the executable to be invoked.
○ argv is the argument vector that should be funneled through to the new executable's main

function.
○ For the purposes of CS110, path and argv[0] end up being the same exact string.
○ If execvp fails to cannibalize the process and install a new executable image within it, it

returns -1 to express failure.
○ If execvp succeeds, it never returns in the calling process.

■ Thus unlike fork which is called once but returns twice, execvp is called once and never
returns.

○ execvp has many variants (execle, execlp, and so forth. Type man execvp to see all of
them). We generally rely on execvp in this course.

Reading: B&O’s Exceptional Control Flow chapter, section 4

int execvp(const char *path, char *argv[]);

Roslyn Michelle Cyrus | Stanford University 25

About execvp (continued)

● Our first example using execvp is our implementation of the function mysystem to emulate the
behavior of the libc function called system.

● The function executes the supplied command as if we typed it out in the terminal ourselves,
ultimately returning once the surrogate command has finished.
○ If the execution of command exits normally (either via an exit system call, or via a normal

return statement from main), then our mysystem implementation should return that exact
same exit value.

○ If the execution exits abnormally (e.g. it segfaults), then we'll assume it aborted because some
signal was ignored, and we'll return the negative of that signal number (e.g. -11 for SIGSEGV).

static int mysystem(const char *command)

Roslyn Michelle Cyrus | Stanford University 26

About execvp (continued)
● Here's the implementation, with minimal error checking (the full version is right here):

static int mysystem(const char *command) {
 pid_t pid = fork();
 if (pid == 0) {
 char *arguments[] = {"/bin/sh", "-c", (char *) command, NULL};
 execvp(arguments[0], arguments);
 printf("Failed to invoke /bin/sh to execute the supplied command.");
 exit(0);
 }
 int status;
 waitpid(pid, &status, 0);
 return WIFEXITED(status) ? WEXITSTATUS(status) : -WTERMSIG(status);
}

● mysystem spawns a child process to perform some task and waits for it to complete.
● We don't bother checking the return value of execvp because we know that if it returns at all, it returns a -1.

If that happens, we need to handle the error and make sure the child terminates via the exit(0) call.
● Why not call execvp inside parent and forgo the child process altogether?

○ Because execvp would consume the calling process, and that's not what we want.

http://cs110.stanford.edu/examples/processes/mysystem.c

Roslyn Michelle Cyrus | Stanford University 27

About execvp (continued)
● Here's a test harness that we can run to confirm our mysystem implementation is working as expected:

static const size_t kMaxLine = 2048;
int main(int argc, char *argv[]) {
 char command[kMaxLine];
 while (true) {
 printf("> ");
 fgets(command, kMaxLine, stdin);
 if (feof(stdin)) break;
 command[strlen(command) - 1] = '\0'; // overwrite '\n'
 printf("retcode = %d\n", mysystem(command));
 }

 printf("\n");
 return 0;
}

● fgets is a somewhat overflow-safe variant on scanf that knows to read everything up through and
including the newline character. The newline character is retained when using this function so we need to
chomp that newline off before calling mysystem. To exit the loop, press CTRL-D to send EOF.

● For a more involved version of a shell we implemented, review this code (shown on slides 29-31 when you
download the PDF of these slides). You’ll be writing an even more robust shell for a future assignment.

https://cplayground.com/?p=squirrel-gnat-mongoose
http://web.stanford.edu/class/cs110/examples/processes/simplesh.c

Roslyn Michelle Cyrus | Stanford University 28

About execvp (continued)
● The mysystem function is the first example I've provided where fork, execvp, and waitpid all work

together to do something genuinely useful.
○ The test harness we used to exercise mysystem is operationally a miniature terminal.
○ We need to continue implementing a few additional mini-terminals to fully demonstrate how

fork, waitpid, and execvp work in practice.
○ All of this is paying it forward to your third assignment, where you'll implement your own

shell—we call it stsh for Stanford shell—to imitate the functionality of the shell (csh, bash, zsh,
etc.) you've been using since you started using Unix.

● Note that the program that execvp loads and runs is in the context of the process it was run in.
○ It overwrites the address space of the current process but it doesn’t create a new process.
○ The new program still has the same PID and it inherits all of the file descriptors that were open

at the time of the call to execvp.

Roslyn Michelle Cyrus | Stanford University 29

BONUS: Another shell example: simplesh
Let's work through the implementation of a more sophisticated shell: simplesh.
● This is the best example of fork, waitpid, and execvp I can think of: a miniature shell not unlike

those you've been using since the day you first logged into a myth machine.
● simplesh operates as a read-eval-print loop—often called a repl—which itself responds to the

many things we type in by forking off child processes.
○ Each child process is initially a deep clone of the simplesh process.
○ Each child proceeds to replace its own image with the new one we specify, e.g. ls, cp, our

own CS110 search (which we wrote during our second lecture), or even emacs.
○ As with traditional shells, a trailing ampersand—e.g. as with emacs &—is an instruction to

execute the new process in the background without forcing the shell to wait for it to finish.
That means we can launch other programs from the foreground before that background
process finishes.

● Implementation of simplesh is presented on the next slide. Where helper functions don't rely on
CS110 concepts, I omit their implementations (but describe them in lecture).

Roslyn Michelle Cyrus | Stanford University 30

BONUS: Another shell example: simplesh
● Here's the core implementation of simplesh (full implementation is right here):

// simplesh.c
int main(int argc, char *argv[]) {
 while (true) {
 char command[kMaxCommandLength + 1];
 readCommand(command, kMaxCommandLength);
 char *arguments[kMaxArgumentCount + 1];
 int count = parseCommandLine(command, arguments, kMaxArgumentCount);
 if (count == 0) continue;
 if (strcmp(arguments[0], "quit") ==) break; // hardcoded builtin to exit shell
 bool isbg = strcmp(arguments[count - 1], "&") == 0;
 if (isbg) arguments[--count] = NULL; // overwrite "&"
 pid_t pid = fork();
 if (pid == 0) execvp(arguments[0], arguments);
 if (isbg) { // background process, don't wait for child to finish
 printf("%d %s\n", pid, command);
 } else { // otherwise block until child process is complete
 waitpid(pid, NULL, 0);
 }
 }
 printf("\n");
 return 0;
}

http://web.stanford.edu/class/cs110/examples/processes/simplesh.c

Roslyn Michelle Cyrus | Stanford University 31

BONUS: Another shell example: simplesh
● Take a closer look at the highlighted line. Do you see the problem? We’ll fix it in a future lecture!

// simplesh.c
int main(int argc, char *argv[]) {
 while (true) {
 char command[kMaxCommandLength + 1];
 readCommand(command, kMaxCommandLength);
 char *arguments[kMaxArgumentCount + 1];
 int count = parseCommandLine(command, arguments, kMaxArgumentCount);
 if (count == 0) continue;
 if (strcmp(arguments[0], "quit") ==) break; // hardcoded builtin to exit shell
 bool isbg = strcmp(arguments[count - 1], "&") == 0;
 if (isbg) arguments[--count] = NULL; // overwrite "&"
 pid_t pid = fork();
 if (pid == 0) execvp(arguments[0], arguments);
 if (isbg) { // background process, don't wait for child to finish (we should, and we’ll learn how later!)
 printf("%d %s\n", pid, command);
 } else { // otherwise block until child process is complete
 waitpid(pid, NULL, 0);
 }
 }
 printf("\n");
 return 0;
}

Roslyn Michelle Cyrus | Stanford University 32

Introducing Pipes
Now it’s time to introduce the notion of a pipe, the pipe and dup2 system
calls, and how they can be used to introduce communication channels
between the different processes.

Roslyn Michelle Cyrus | Stanford University 33

Descriptors and fork
● Recall that the parent process’ file

descriptor table is cloned on fork and
preserved across execvp boundaries.

● Thus on fork, a child process inherits
the stdout linked to the terminal, and if it
calls execvp, the new executable can
still write to the terminal.

● Remember these virtual files stored in
the v-node table? We can now introduce
another type of virtual file: a pipe. These
are unnamed pipes (we won’t discuss
named pipes in this class) that allow the
output of one source to be passed as
input to another source. They are an
important type of interprocess
communication.

Reading: B&O’s Exceptional Control Flow chapter, section 4

Roslyn Michelle Cyrus | Stanford University 34

Understanding Data Flow
● The below figure represents the default setup of the standard input, output, and error streams.

● I use the words “in” and “out” to represent data that goes into one area and out of another area,
respectively. The keyboard (used to model the “readable” terminal) passes data to the program that
runs the command (from the command’s program’s perspective, it receives input via stdin), and that
program sends output to the “writable” terminal via stdout.

● Generally, data flowing “into” something is considered input (and is being read in from a source via a
file descriptor) and data flowing “out” of something is considered output (and is being written out to a
source via a file descriptor).
○ Put another way: input is read from somewhere; output is written somewhere.

Reading: My data flow blog post

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 35

Understanding Data Flow
● Simple example (when using sort this way, hit CTRL-D to let it know that you’re done sending input):

Reading: My data flow blog post

myth60$ sort

cherry

banana

apple

apple

banana

cherry

myth60$

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 36

All About Pipes

● Pipes allow data from one process to be passed to another (via unidirectional data flow) so that
commands can be chained together by their streams.

● This chaining of processes can be represented by a pipeline: commands in a pipeline are connected
via pipes, where data is shared between processes by flowing from one end of each pipe to the
other.

● Since each command in the pipeline is run in a separate process, each with a separate memory
space, we need a way to allow those processes to communicate with each other. This is is exactly the
behavior that the pipe() system call provides.

Reading: My data flow blog post

echo -e "peach\npear\napple" | sort | grep ea

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 37

All About Pipes

● Physical pipes are naturally a great analogy for this abstraction.

● We can think of the data stream that starts in one process as water in an isolated environment, and
the only way to allow the water to flow to the environment of the next process is to connect the
environments with a pipe.

● In this way, the water (data) flows from the first environment (process) into the pipe, filling up the pipe
with all its water and then draining its water into the other environment.

Reading: My data flow blog post

echo -e "peach\npear\napple" | sort | grep ea

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 38

All About Pipes

● Ignoring file descriptors 3 and 4 for a moment, look at the “in” and “out” words: we see that data
flows out of the sort process and into the pipe, where it then is passed out of the pipe and into the
grep process. “In” and “out” are phrased based on the context they are used in: either inside the
pipe or outside of it.

Reading: My data flow blog post

echo -e "peach\npear\napple" | sort | grep ea

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 39

All About Pipes

● The pipe system call takes an uninitialized array of two integers—let’s call it fds—and populates it with
two file descriptors such that everything written to fds[1] can be read from fds[0].

● pipe is particularly useful for allowing parent processes to communicate with spawned child processes
because the file descriptor table of the parent is cloned in the child. That means the open file table entries
referenced by the parent's pipe endpoints are also referenced by the child's copies of them.

Reading: My data flow blog post

int pipe(int fds[]);

echo -e "peach\npear\napple" | sort | grep ea

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 40

All About Pipes

Important, and easy to get confused: The read and write actions defined by a pipe call are
from the perspective of the two processes using the pipe, not the pipe itself!

This is why you see fd 3 (the read end) on the right of the pipe and fd 4 (the write end) on the left
of the pipe. It may seem “backwards”, but when you think about it from the perspective of the
processes using the pipe, it makes sense.

Reading: My data flow blog post

int pipe(int fds[]);

echo -e "peach\npear\napple" | sort | grep ea

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 41

All About Pipes
Let’s show how pipe works and how data can be passed from one process to another:

int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds); // assume that fds = [3, 4]
 pid_t pid = fork();
 if (pid == 0) {
 close(fds[1]); // without this, program hangs
 printf("Read from pipe bridging processes: ");
 char buffer[6];
 int nbytes;
 while ((nbytes = read(fds[0], buffer, sizeof(buffer))) > 0)
 printf("%s", buffer);
 printf("\n");
 close(fds[0]);
 return 0;
 }

 close(fds[0]);
 write(fds[1], "hello", 6);
 close(fds[1]); // without this, program hangs
 waitpid(pid, NULL, 0);
 return 0;
}

Reading: My data flow blog post

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 42

All About Pipes
How do pipe and fork work together in the previous example?

● The base address of a small integer array called fds is shared with the call to pipe.
● pipe allocates two descriptors, setting the first to draw from a resource and the second to publish to that

same resource.
● pipe then plants copies of those two descriptors into indices 0 and 1 of the supplied array before it

returns.
● The fork call creates a child process, which itself inherits a shallow copy of the parent's fds array.

○ The reference counts in each of the two open file entries is promoted from 1 to 2 to reflect the fact
that two descriptors—one in the parent, and a second in the child—reference each of them.

○ Immediately after the fork call, anything printed to fds[1] is readable from the parent's fds[0]
and the child's fds[0].

○ Similarly, both the parent and child are capable of publishing text to the same resource via their
copies of fds[1].

Reading: My data flow blog post

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 43

All About Pipes
How do pipe and fork work together in the previous example?

● The parent closes fds[0] before it writes to anything to fds[1] to emphasize the fact that the parent has no
interest in reading anything from the pipe.

● Similarly, the child closes fds[1] before it reads from fds[0] to emphasize the fact that the it has zero
interest in publishing anything to the pipe. It's imperative all write endpoints of the pipe be closed if not
being used, else the read end will never know if more text is to come or not.

● For simplicity, I assume the one call to write in the parent presses all six bytes of "hello"('\0' included) in
a single call. Similarly, I assume the one call to read pulls in those same six bytes into its local buffer with
just the one call.

● As is the case with all programs, I make the concerted effort to donate all resources back to the system
before I exit. That's why I include as many close calls as I do in both the child and the parent before
allowing them to exit.

● Remember: to check for file descriptor leaks in valgrind, add the following flag: --track-fds=yes

Reading: My data flow blog post

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 44

All About Pipes
Reading: My data flow blog post

Here are some more detailed
illustrations of the previous code
example.

The thin arrows represent data flow.

Note how the pipe call populates an
array with file descriptors 3 and 4 in
this example. 3 is hooked up so that
a process can read data from that
end of the pipe (the read end) and 4
is hooked up so that a process can
write data to that end of the pipe
(the write end).

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 45

All About Pipes
Reading: My data flow blog post

Calling fork will create a
copy of the parent
process: the child. Recall
that the file descriptor
table is also copied to
the child as shown.

Next, the parent and
child close the
descriptors they don’t
use. The parent is only
writing, so it closes its
access to the read end
of the pipe. The child
only reads so it closes its
access to the write end.
(Closes are shown with
red arrows.)

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 46

All About Pipes
Reading: My data flow blog post

The parent writes a
string to the write end of
the pipe.

The child reads in data
until the parent closes
the write end, which will
tell the read call that no
more data will be written
since at that point, both
pointers to the write end
of the pipe have been
closed.

Once the child is done
reading data, it closes
the read end of the pipe
to clean up after itself.

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 47

All About Pipes
Reading: My data flow blog post

After the child finishes,
the parent can continue,
at which point it returns
and its default
descriptors can be
closed (the three default
descriptors are cleaned
up automatically).

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 48

All About Pipes
Reading: My data flow blog post

Here’s a way to visualize how
the pipe is set up by the
kernel. It is a virtual “file”
stored in memory, not in the
actual filesystem.

The read and write functions
are inside the v-node
(remember: the v-node entries
store function pointers), where
read pulls data out of the
buffer and write puts stuff in.
A vnode table entry is really a
function lookup table with
some associated data; the
associated data would be a
pointer to the buffer, and the
read/write functions would
know how to use the buffer.

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 49

Introducing The dup2 System Call

● A pipe can be used to allow two processes (or even the same process!) to exchange data in one
direction. However, a process may want to change the source of the data that gets written to the
pipe or change where the data flows out of the pipe. The dup2 call supports this.

● dup2() copies descriptor table entry oldfd to descriptor table entry newfd, overwriting the
previous contents of descriptor table entry newfd. If newfd was already open, then dup2 closes
newfd before it copies oldfd.

Reading: My data flow blog post

int dup2(int oldfd, int newfd);

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 50

The dup2 System Call: An Example

An important detail about the way dup2()
works is that it will first close its second
parameter, which is a file descriptor, if
necessary.

Thus in this example, stdin (which is open by
default) is first closed, which will remove its
reference to the default terminal (keyboard) file.
Then the child’s stdin will be able to receive
data in the pipe via fds[0] instead of from the
keyboard. Remember that by default, stdin is
where a program expects to get its input from,
and stdout is where it expects to send it.

A use case for this is if the child is running the
first command in a pipeline, so it will want to
get input the default way via stdin but still get
data from parent via a pipe.

Reading: My data flow blog post

dup2(fds[0], STDIN_FILENO);

http://www.rozmichelle.com/pipes-forks-dups/

Roslyn Michelle Cyrus | Stanford University 51

Putting it all together! 🥳

fork execvp waitpid pipe dup2

Roslyn Michelle Cyrus | Stanford University 52

Subprocess Routine
Here's a more sophisticated example that combines what we’ve learned so far:

● Using pipe, fork, dup2, execvp, close, and waitpid, we can implement the subprocess function, which
relies on the following record definition and is implemented to the following prototype (full
implementation is right here):

typedef struct {
 pid_t pid;
 int supplyfd;
} subprocess_t;

subprocess_t subprocess(const char *command);

The child process created by subprocess executes the provided command (assumed to be a '\0'-terminated
C string) by calling "/bin/sh -c <command>" as we did in our mysystem implementation.

■ Rather than waiting for command to finish, subprocess returns a subprocess_t with the command
process’s pid and a single descriptor called supplyfd.

■ By design, arbitrary text can be published to the return value’s supplyfd field with the understanding
that that same data can be ingested verbatim by the child's stdin.

http://web.stanford.edu/class/cs110/examples/processes/subprocess.c

Roslyn Michelle Cyrus | Stanford University 53

Subprocess Routine
Let's first implement a test harness to illustrate how subprocess should work so we'll have an easier time
understanding the details of its implementation.

● Here's the program, which spawns a child process that reads from stdin and publishes everything it
reads to its stdout in sorted order:

int main(int argc, char *argv[]) {
 subprocess_t sp = subprocess("/usr/bin/sort");
 const char *words[] = {
 "felicity", "umbrage", "susurration", "halcyon",
 "pulchritude", "ablution", "somnolent", "indefatigable"
 };
 for (size_t i = 0; i < sizeof(words)/sizeof(words[0]); i++) {
 dprintf(sp.supplyfd, "%s\n", words[i]); // dprintf prints to a file descriptor
 }
 close(sp.supplyfd); // necessary to communicate end-of-input
 int status;
 pid_t pid = waitpid(sp.pid, &status, 0);
 return pid == sp.pid && WIFEXITED(status) ? WEXITSTATUS(status) : -127; // 127: command not found
}

Roslyn Michelle Cyrus | Stanford University 54

Subprocess Routine
Key features of the test harness:

■ The program creates a subprocess_t running sort and publishes eight
fancy SAT words to supplyfd, knowing those words flow through the
pipe to the child's stdin.

■ The parent shuts the supplyfd down by passing it to close to indicate
that no more data will ever be written through that descriptor. The
reference count of the relevant open file entry referenced by supplyfd
is demoted from 1 to 0 with that close call. That sends an EOF to the
process reading data from the other end of the pipe.

■ The parent then blocks within a waitpid call until the child exits. When
the child exits, the parent assumes all of the words have been printed in
sorted order to stdout.

myth60$./subprocess
ablution
felicity
halcyon
indefatigable
pulchritude
somnolent
susurration
umbrage
myth60$

Roslyn Michelle Cyrus | Stanford University 55

Subprocess Routine
Implementation of subprocess (error checking intentionally omitted for brevity):

subprocess_t subprocess(const char *command) {
 int fds[2];
 pipe(fds);
 subprocess_t process = { fork(), fds[1] };
 if (process.pid == 0) {
 close(fds[1]); // child isn’t writing to pipe
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 char *argv[] = {"/bin/sh", "-c", (char *) command, NULL};
 execvp(argv[0], argv); // assume success, which means that execvp doesn’t return
 }
 close(fds[0]);
 return process;
}

■ The write end of the pipe is embedded into the subprocess_t. That way, the parent knows where to
publish text so it flows to the read end of the pipe, across the parent process/child process boundary.
This is bonafide interprocess communication.

■ The child process uses dup2 to bind the read end of the pipe to its own standard input. Once the
reassociation is complete, fds[0] can be closed.

Roslyn Michelle Cyrus | Stanford University
56

End of Lecture 6

