
CS110 Spring 2021
Lecture 13: Intro To Networking

Principles of Computer Systems
Stanford University, Dept. Of Computer Science

Lecturers: Jerry Cain & Roz Cyrus

1
Version 1

Roslyn Michelle Cyrus | Stanford University

● Today's lecture examples reside within:
/usr/class/cs110/lecture-examples/networking.
○ First ssh into a myth machine (ssh yourusername@myth.stanford.edu). When prompted

for your password, it is normal for the text not to appear as you enter your password.
Once logged onto a myth machine, cd into the above directory.

○ To get started, type:
git clone /usr/class/cs110/lecture-examples cs110-lecture-examples
at the command prompt to create a local copy of the master.

○ Each time I mention there are new examples (or whenever you think to), descend into
your local copy and type git pull. Doing so will update your local copy to match
whatever the master has become.

2

Accessing Code Examples

mailto:yourusername@myth.stanford.edu

Roslyn Michelle Cyrus | Stanford University 3

Networking

● Networking is simply communication between two computers connected on a network. You
can actually set up a network connection on a single computer as well.

● A network requires one computer to act as the server, waiting patiently for an incoming
connection from another computer, the client.

● Note: clients and servers are processes and not machines (or hosts, as they are often called).
A single host can run many different clients and servers concurrently, and a client and server
transaction can be on the same or different hosts.

● To a host, a network is just another I/O device that serves as a source and sink for data.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 4

Networking
● Every computer on a network has a unique IP address that identifies it on the network.

○ When you want to connect to a server, you need to know its IP address.
○ By convention, each of the four bytes in a 32-bit IP address is represented by its decimal

value and separated by a period. An example IP address is “192.168.1.1”.
○ “500.304.259.1” is not a valid IP address, since the numbers 500, 304, and 259 are

greater than 255 and thus can’t be stored in single bytes.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 5

Networking
● Humans aren’t generally good at remembering strings of numbers like IP addresses.

○ The Domain Name System (DNS) translates human-friendly hostnames (also called
domain names) into IP addresses.

○ nslookup is a program to query Internet domain name servers. You can make a DNS
query to ask for the IP address of “web.stanford.edu,” and you’ll get back 171.67.215.200:

Reading: B&O’s Network Programming chapter

$ nslookup stanford.edu

[omitted]

Non-authoritative answer:

Name: stanford.edu

Address: 171.67.215.200

Roslyn Michelle Cyrus | Stanford University 6

Networking
● Internet clients and servers communicate by sending and receiving streams of bytes over

connections.
○ A connection is point-to-point in the sense that it connects a pair of processes.
○ It is full duplex in the sense that data can flow in both directions at the same time.
○ It is reliable in the sense that the stream of bytes sent by the source process is

eventually received by the destination process in the same order it was sent (barring
some catastrophic failure).

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 7

Networking

Server-side applications set up a socket that listens on a particular port. From the perspective of the Linux kernel, a socket is
an endpoint of a connection. But to a Linux program, a socket is an open file with a corresponding descriptor.
● A port number is like a virtual process ID that the host associates with the true pid of the application’s process.
● Each socket has a socket address that consists of an internet address and a 16-bit integer port. The socket address is

denoted by the notation address:port.
● The port in the client’s socket address is assigned automatically by the kernel when the client makes a connection

request and this port is known as an ephemeral port.
● By contrast, the port in the server’s socket address is usually some well-known port that is permanently associated with

the service (example: http, the well-known service name for the Web service, is port 80; https is 443).
● A connection is uniquely identified by a socket pair: the socket addresses of its two end points.

○ The socket pair is denoted by the tuple (client address:client port, server address:server port).

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 8

Networking
● You can see some of the ports your computer is listening to with the netstat command:

Reading: B&O’s Network Programming chapter

myth59$ netstat -plnt
(Not all processes could be identified, non-owned process info
 will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:587 0.0.0.0:* LISTEN -
tcp 0 0 127.0.1.1:53 0.0.0.0:* LISTEN -
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN -
tcp 0 0 127.0.0.1:631 0.0.0.0:* LISTEN -
tcp6 0 0 :::22 :::* LISTEN -
tcp6 0 0 ::1:631 :::* LISTEN -

● Some common ports are listed above. You can see a full list here and here.
○ Ports 25 and 587 are SMTP (Simple Mail Transfer Protocol), for sending and receiving email.
○ Port 53 is the DNS (Domain Name Service) port, for associating names with IP addresses.
○ Port 22 is the port for SSH (Secure Shell)
○ Port 631 is for IPP (internet printing protocol)

● For your own programs, generally try to stay away from port numbers listed in the links above, but otherwise, ports
are up for grabs to any program that wants one.

https://www.speedguide.net/ports.php
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Roslyn Michelle Cyrus | Stanford University 9

Networking
● If you’re curious, mappings between well-known ports and service names are contained in the file

/etc/services on each Linux machine.

Reading: B&O’s Network Programming chapter

myth59$ cat /etc/services
...
tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
...
ftp 21/tcp
fsp 21/udp fspd
ssh 22/tcp # SSH Remote Login Protocol
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver
whois 43/tcp nicname
tacacs 49/tcp # Login Host Protocol (TACACS)
tacacs 49/udp
domain 53/tcp # Domain Name Server
domain 53/udp
bootps 67/udp
...
http 80/tcp www # WorldWideWeb HTTP
...

Roslyn Michelle Cyrus | Stanford University 10

Networking
The sockets interface

Roslyn Michelle Cyrus | Stanford University 11

Networking
The sockets interface
● Clients and servers use the socket function to

create a socket descriptor. We can set up the
socket to be the endpoint of a connection by
calling socket with specific arguments or by
using getaddrinfo to generate these
parameters automatically.

Roslyn Michelle Cyrus | Stanford University 12

Networking
The sockets interface
● The bind function asks the kernel to associate

a server’s socket address with a socket
descriptor.

● A client establishes a connection with a server
by calling the connect function.

Roslyn Michelle Cyrus | Stanford University 13

Networking
The sockets interface
● The listen function tells the kernel that the

descriptor will be used by a server instead of a
client; this is important because clients are active
entities that initiate connection requests,
whereas servers are passive and wait for
connection requests from clients. By default, the
kernel assumes that a descriptor created by the
socket function is active.

● Servers wait for connection requests from clients
by calling the accept function. The function
returns a connected descriptor that can be used
to communicate with the client using Unix I/O
functions.

Roslyn Michelle Cyrus | Stanford University 14

Networking
Difference between a listening descriptor and a connected descriptor:
● The listening descriptor serves as an endpoint for client connection requests. It is typically created once and exists

for the lifetime of the server.
● The connected descriptor is the endpoint of the connection that is established between the client and the server. It is

created each time the server accepts a connection request and exists only as long as it takes the server to service a
client.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 15

Networking
● Let's create our first server (entire program here):

Reading: B&O’s Network Programming chapter

● accept (found in sys/socket.h) returns a descriptor that can be written to and read from. Whatever's
written is sent to the client, and whatever the client sends back is readable here.
○ This descriptor is one end of a bidirectional pipe bridging two processes—even if they are on

different machines!

int main(int argc, char *argv[]) {
 int server = createServerSocket(12345);
 while (true) {
 int client = accept(server, NULL, NULL); // the two NULLs could instead be used to
 // surface the IP address of the client
 publishTime(client);
 }
 return 0;
}

http://web.stanford.edu/class/cs110/examples/networking/time-server-descriptors.cc

Roslyn Michelle Cyrus | Stanford University 16

Networking
● The publishTime function is straightforward:

Reading: B&O’s Network Programming chapter

● The first five lines here produce the full time string that should be published.
○ Let these five lines represent more generally the server-side computation needed for the service to

produce output. Here, the payload is the current time, but it could have been a static HTML page, a
Google search result, an RSS document, or a movie on Netflix.

● The remaining lines publish the time string to the client socket using the low-level I/O we've seen before.

static void publishTime(int client) {
 time_t rawtime;
 time(&rawtime);
 struct tm *ptm = gmtime(&rawtime);
 char timestr[128]; // more than big enough
 /* size_t len = */ strftime(timestr, sizeof(timestr), "%c\n", ptm);
 size_t numBytesWritten = 0, numBytesToWrite = strlen(timestr);
 while (numBytesWritten < numBytesToWrite) {
 numBytesWritten += write(client,
 timestr + numBytesWritten,
 numBytesToWrite - numBytesWritten);
 }
 close(client);
}

Roslyn Michelle Cyrus | Stanford University 17

Networking
● Note that the while loop for writing bytes is a bit more important now that we are networking: we are more

likely to need to write multiple times on a network.
○ The socket descriptor is bound to a network driver that may have a limited amount of space.
○ That means write's return value could very well be less than what was supplied by the third

argument.
● Ideally, we'd rely on either C streams (e.g. the FILE *) or C++ streams (e.g. the iostream class hierarchy) to

layer over data buffers and manage the while loop around exposed write calls for us.
● Fortunately, there's a stable, easy-to-use third-party library—one called socket++ that provides exactly this.

○ socket++ provides iostream subclasses that respond to operator<<, operator>>, getline, endl,
and so forth, just like cin, cout, and file streams do.

○ We are going to operate as if this third-party library was just part of standard C++.
● The next slide shows a prettier version of publishTime.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 18

Networking
● Here's the new implementation of publishTime (and the updated code):

Reading: B&O’s Network Programming chapter

● We rely on the same C library functions to generate the time string.
● This time, however, we insert that string into an iosockstream that itself layers over the client socket.
● Note that the intermediary sockbuf class takes ownership of the socket and closes it when its destructor

is called.

static void publishTime(int client) {
 time_t rawtime;
 time(&rawtime);
 struct tm *ptm = gmtime(&rawtime);
 char timestr[128]; // more than big enough
 /* size_t len = */ strftime(timestr, sizeof(timestr), "%c", ptm);
 sockbuf sb(client);
 iosockstream ss(&sb);
 ss << timestr << endl;
} // sockbuf destructor closes client

http://web.stanford.edu/class/cs110/examples/networking/time-server-streams.cc

Roslyn Michelle Cyrus | Stanford University 19

Networking
● Multithreading can significantly improve the performance of networked applications.
● Our time server can benefit from multithreading as well. The work a server needs to do in order to meet the

client's request might be time consuming—so time consuming, in fact, that the server is slow to iterate and
accept new client connections.

● As soon as accept returns a socket descriptor, spawn a child thread—or reuse an existing one within a
ThreadPool—to get any intense, time consuming computation off of the main thread. The child thread can
use a second processor or a second core, and the main thread can quickly move on to its next accept call.

● Here's a new version of our time server, which uses a ThreadPool (which you’re implementing for
Assignment 5) to get the computation off the main thread.

●

Reading: B&O’s Network Programming chapter

int main(int argc, char *argv[]) {
 int server = createServerSocket(12345);
 ThreadPool pool(4);
 while (true) {
 int client = accept(server, NULL, NULL); // the two NULLs could instead be used
 // to surface the IP address of the client
 pool.schedule([client] { publishTime(client); });
 }
 return 0;
}

Roslyn Michelle Cyrus | Stanford University 20

Networking
● The implementation of publishTime needs to change just a little if it's to be thread safe.
● The change is simple but important: we need to call a different version of gmtime.
● gmtime returns a pointer to a single, statically allocated global that's used by all calls.
● If two threads make competing calls to it, then both threads race to pull time information from the shared,

statically allocated record.
● Of course, one solution would be to use a mutex to ensure that a thread can call gmtime without

competition and subsequently extract the data from the global into local copy.
● Another solution—one that doesn't require locking and one I think is better—makes use of a second version

of the same function called gmtime_r. This second, reentrant version just requires that space for a
dedicated return value be passed in.

● A function is reentrant if a call to it can be interrupted in the middle of its execution and called a second
time before the first call has completed.

● While not all reentrant functions are thread-safe, gmtime_r itself is, since it doesn't depend on any shared
resources.

● The thread-safe version of publishTime is presented on the next slide.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 21

Networking
● Here's the updated version of publishTime (and the updated code):

Reading: B&O’s Network Programming chapter

static void publishTime(int client) {
 time_t rawtime;
 time(&rawtime);
 struct tm tm;
 gmtime_r(&rawtime, &tm);
 char timestr[128]; // more than big enough
 /* size_t len = */ strftime(timestr, sizeof(timestr), "%c", &tm);
 sockbuf sb(client); // destructor closes socket
 iosockstream ss(&sb);
 ss << timestr << endl;
}

http://web.stanford.edu/class/cs110/examples/networking/time-server-concurrent.cc

Roslyn Michelle Cyrus | Stanford University 22

Networking
● Implementing your first client! (code here)
● The protocol—that's the set of rules both client and server must follow if they're to speak with one

another—is very simple.
○ The client connects to a specific server and port number. The server responds to the connection by

publishing the current time into its own end of the connection and then hanging up. The client ingests
the single line of text and then itself hangs up.

Reading: B&O’s Network Programming chapter

● We'll soon discuss the implementation of createClientSocket. For now, view it as a built-in that sets up
a bidirectional pipe between a client and a server running on the specified host (e.g. myth61) and bound
to the specified port number (e.g. 12345).

int main(int argc, char *argv[]) {
 int clientSocket = createClientSocket("myth61.stanford.edu", 12345);
 assert(client >= 0);
 sockbuf sb(clientSocket); // destructor closes socket
 iosockstream ss(&sb);
 string timeline;
 getline(ss, timeline);
 cout << timeline << endl;
 return 0;
}

http://web.stanford.edu/class/cs110/examples/networking/time-client.cc

Roslyn Michelle Cyrus | Stanford University 23

Networking
● Here’s some output when running our server and client (in this example, on the same machine):

Reading: B&O’s Network Programming chapter

rcyrus@myth61$./time-server-concurrent &
[1] 15016
rcyrus@myth61$ Server listening on port 12345.
rcyrus@myth61$./time-client myth61.stanford.edu 12345
Fri May 14 20:49:51 2021
rcyrus@myth61$./time-client myth61.stanford.edu 12345
Fri May 14 20:50:42 2021
rcyrus@myth61$./time-client myth61.stanford.edu 12345
Fri May 14 20:50:43 2021
rcyrus@myth61$./time-client myth61.stanford.edu 12345
Fri May 14 20:50:44 2021
rcyrus@myth61$

Roslyn Michelle Cyrus | Stanford University
24

Question: will this work if we use two
different myth machines?

Roslyn Michelle Cyrus | Stanford University 25

Networking
● Yes! See the following example:

Reading: B&O’s Network Programming chapter

On myth61:
rcyrus@myth61$./time-server-concurrent
rcyrus@myth61$ Server listening on port 12345.

On another myth:
rcyrus@myth66$./time-client myth61.stanford.edu 12345
Fri May 14 20:49:51 2021
rcyrus@myth66$./time-client myth61.stanford.edu 12345
Fri May 14 20:50:42 2021
rcyrus@myth66$./time-client myth61.stanford.edu 12345
Fri May 14 20:50:43 2021
rcyrus@myth66$./time-client myth61.stanford.edu 12345
Fri May 14 20:50:44 2021
rcyrus@myth66$

Roslyn Michelle Cyrus | Stanford University
26

End of Lecture 13

