
CS110 Spring 2021
Lecture 14: Network Clients & Servers

Principles of Computer Systems
Stanford University, Dept. Of Computer Science

Lecturer: Jerry Cain & Roz Cyrus

1
Version 1

Roslyn Michelle Cyrus | Stanford University

● Today's lecture examples reside within:
/usr/class/cs110/lecture-examples/networking.
○ First ssh into a myth machine (ssh yourusername@myth.stanford.edu). When prompted

for your password, it is normal for the text not to appear as you enter your password.
Once logged onto a myth machine, cd into the above directory.

○ To get started, type:
git clone /usr/class/cs110/lecture-examples cs110-lecture-examples
at the command prompt to create a local copy of the master.

○ Each time I mention there are new examples (or whenever you think to), descend into
your local copy and type git pull. Doing so will update your local copy to match
whatever the master has become.

2

Accessing Code Examples

mailto:yourusername@myth.stanford.edu

Roslyn Michelle Cyrus | Stanford University 3

Sockets Interface Recap

Roslyn Michelle Cyrus | Stanford University 4

Networking Recap

● Multithreading can significantly improve the performance of networked applications.
● Our time server can benefit from multithreading as well. The work a server needs to do in order to meet the

client's request might be time consuming—so time consuming, in fact, that the server is slow to iterate and
accept new client connections.

● As soon as accept returns a socket descriptor, spawn a child thread—or reuse an existing one within a
ThreadPool—to get any intense, time consuming computation off of the main thread. The child thread can
use a second processor or a second core, and the main thread can quickly move on to its next accept call.

● Here's a new version of our time server, which uses a ThreadPool (which you’re implementing for
Assignment 5) to get the computation off the main thread.

Reading: B&O’s Network Programming chapter

int main(int argc, char *argv[]) {
 int server = createServerSocket(12345);
 ThreadPool pool(4);
 while (true) {
 int client = accept(server, NULL, NULL); // the two NULLs could instead be used
 // to surface the IP address of the client
 pool.schedule([client] { publishTime(client); });
 }
 return 0;
}

Roslyn Michelle Cyrus | Stanford University 5

Sockets Interface Recap

Roslyn Michelle Cyrus | Stanford University 6

Networking: wget
● wget is a command line utility that, given a URL, downloads a single document (HTML document, image,

video, etc.) and saves a copy of it to the current working directory.
● Without being concerned so much about error checking and robustness, we can write a simple program to

emulate the wget's most basic functionality.
● To get us started, here are the main and parseUrl functions.
● parseUrl dissects the supplied URL to surface the host and pathname components.
●

Reading: B&O’s Network Programming chapter

static const string kProtocolPrefix = "http://";
static const string kDefaultPath = "/";
static pair<string, string> parseURL(string url) {
 if (startsWith(url, kProtocolPrefix))
 url = url.substr(kProtocolPrefix.size());
 size_t found = url.find('/');
 if (found == string::npos) // no pathname found
 return make_pair(url, kDefaultPath);
 string host = url.substr(0, found);
 string path = url.substr(found);
 return make_pair(host, path);
}

int main(int argc, char *argv[]) {
 pullContent(parseURL(argv[1]));
 return 0;
}

https://web.stanford.edu/class/cs110/examples/networking/web-get.cc

Roslyn Michelle Cyrus | Stanford University 7

Networking: wget
● pullContent, of course, needs to manage everything, including the networking.

Reading: B&O’s Network Programming chapter

static const unsigned short kDefaultHTTPPort = 80;
static void pullContent(const pair<string, string>& components) {
 int client = createClientSocket(components.first, kDefaultHTTPPort);
 if (client == kClientSocketError) {
 cerr << "Could not connect to host named \"" << components.first << "\"." << endl;
 return;
 }
 sockbuf sb(client);
 iosockstream ss(&sb);
 issueRequest(ss, components.first, components.second);
 skipHeader(ss);
 savePayload(ss, getFileName(components.second));
}

● We've already used this createClientSocket function for our time-client. This time, we're connecting
to real but arbitrary web servers that speak HTTP.

● The implementations of issueRequest, skipHeader, and savePayload subdivide the client-server
conversation into manageable chunks.

● The implementations of these three functions have little to do with network connections, but they have
much to do with the protocol that guides any and all HTTP conversations.

Roslyn Michelle Cyrus | Stanford University 8

Networking: wget
● Here's the implementation of issueRequest, which generates the smallest legitimate HTTP request

possible and sends it over to the server.

Reading: B&O’s Network Programming chapter

static void issueRequest(iosockstream& ss, const string& host, const string& path) {
 ss << "GET " << path << " HTTP/1.0\r\n";
 ss << "Host: " << host << "\r\n";
 ss << "\r\n";
 ss.flush();
}

● It's standard HTTP-protocol practice that each line, including the blank line that marks the end of the
request, end in CRLF (short for carriage-return-line-feed), which is '\r' following by '\n'.

● The flush is necessary to ensure all character data is pressed over the wire and consumable at the other
end.

● After the flush, the client transitions from supply to ingest mode. Remember, the iosockstream is
read/write, because the socket descriptor backing it is bidirectional.

Roslyn Michelle Cyrus | Stanford University 9

Networking: wget
● skipHeader reads through and discards all of the HTTP response header lines until it encounters either a

blank line or one that contains nothing other than a '\r'. The blank line is, indeed, supposed to be "\r\n",
but some servers—often hand-rolled ones—are sloppy, so we treat the '\r' as optional. Recall that getline
chews up the '\n', but it won't chew up the '\r'.

Reading: B&O’s Network Programming chapter

static void skipHeader(iosockstream& ss) {
 string line;
 do {
 getline(ss, line);
 } while (!line.empty() && line != "\r");
}

● In practice, a true HTTP client—in particular, something as HTTP-compliant as the wget we're
imitating—would ingest all of the lines of the response header into a data structure and allow it to influence
how it treats payload.

● For instance, the payload might be compressed and should be expanded before saved to disk.
● I'll assume that doesn't happen, since our request didn't ask for compressed data. 🙂

Roslyn Michelle Cyrus | Stanford University 10

Networking: wget
● Everything beyond the response header and that blank line is considered payload—that's the timestamp, the JSON,

the HTML, the image, or the cat video. 🙂
● Every single byte that comes through should be saved to a local copy.

Reading: B&O’s Network Programming chapter

static string getFileName(const string& path) {
 if (path.empty() || path[path.size() - 1] == '/') return "index.html";
 size_t found = path.rfind('/');
 return path.substr(found + 1);
}

static void savePayload(iosockstream& ss, const string& filename) {
 ofstream output(filename, ios::binary); // don't assume it's text
 size_t totalBytes = 0;
 while (!ss.fail()) {
 char buffer[2014] = {'\0'};
 ss.read(buffer, sizeof(buffer));
 totalBytes += ss.gcount();
 output.write(buffer, ss.gcount());
 }
 cout << "Total number of bytes fetched: " << totalBytes << endl;
}

● HTTP dictates that everything beyond that blank line is payload, and that once the server publishes that payload, it
closes its end of the connection. That server-side close is the client-side's EOF, and we write everything we read.

Roslyn Michelle Cyrus | Stanford University 11

Next Up: APIs!

Roslyn Michelle Cyrus | Stanford University 12

APIs
● An application programming interface (or API) is a set of library functions one can use in order to build a

larger piece of software.
● You're familiar with some APIs: #include files, system calls, and ad hoc protocols for driving and

communicating with child processes using pipes and signals.
● Very often these libraries reside on other machines, and we interface with them over the Internet.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 13

Networking: Word Finder
● I want to implement an API server that's architecturally in line with the way Google, Twitter, Facebook, and

Instagram architect their own API servers.
● This example is inspired by a website called Lexical Word Finder.

○ Our implementation assumes we have a standard Unix executable called scrabble-word-finder.
The source code for this executable—completely unaware it'll be used in a larger networked
application—can be found right here.

○ scrabble-word-finder is implemented using only CS106B techniques—standard file I/O and
procedural recursion with simple pruning.

○ Here are two abbreviated sample runs:

Reading: B&O’s Network Programming chapter

myth61:$./scrabble-word-finder lexical
ace
// many lines omitted for brevity
lei
lex
lexica
lexical
li
lice
lie
lilac
xi
myth61:$

myth61:$./scrabble-word-finder network
en
// many lines omitted for brevity
wonk
wont
wore
work
worn
wort
wot
wren
wrote
myth61:$

https://developer.twitter.com/en/docs/twitter-api
https://www.instagram.com/developer/
http://www.lexicalwordfinder.com/
http://web.stanford.edu/class/cs110/examples/networking/scrabble-word-finder.cc

Roslyn Michelle Cyrus | Stanford University 14

Networking: Word Finder
● I want to implement an API service using HTTP to replicate what scrabble-wordfinder is capable of.
● We'll expect the API call to come in the form of a URL, and we'll expect that URL to include the rack of

letters.
● Assuming our API server is running on myth54:13133, we expect http://myth54:13133/lexical and

http://myth54:13133/network to generate the following payloads:

Reading: B&O’s Network Programming chapter

{
 time: 0.223399,
 cached: false,
 possibilities: [
 'ace',
 // several words omitted
 'lei',
 'lex',
 'lexica',
 'lexical',
 'li',
 'lice',
 'lie',
 'lilac',
 'xi'
]
}

{
 time: 0.223399,
 cached: false,
 possibilities: [
 'en',
 // several words omitted
 'wonk',
 'wont',
 'wore',
 'work',
 'worn',
 'wort',
 'wot',
 'wren',
 'wrote'
]
}

Roslyn Michelle Cyrus | Stanford University 15

Networking: Word Finder
● One might think to cannibalize the code within scrabble-word-finder.cc to build the core of

scrabble-word-finder-server.cc.
● Reimplementing from scratch is wasteful, time-consuming, and unnecessary. scrabble-word-finder

already outputs the primary content we need for our payload. We're packaging the payload as JSON
instead of plain text, but we can still tap scrabble-word-finder to generate the collection of formable
words.

● Can we implement a server that leverages existing functionality? Of course we can!
● We can just leverage our subprocess_t type and subprocess function from Assignment 3.

Reading: B&O’s Network Programming chapter

struct subprocess_t {
 pid_t pid;
 int supplyfd;
 int ingestfd;
};

subprocess_t subprocess(char *argv[],
 bool supplyChildInput, bool ingestChildOutput) throw (SubprocessException);

http://web.stanford.edu/class/cs110/examples/networking/scrabble-word-finder-server.cc

Roslyn Michelle Cyrus | Stanford University 16

Networking: Word Finder
● Here is the core of the main function implementing our server:

Reading: B&O’s Network Programming chapter

int main(int argc, char *argv[]) {
 unsigned short port = extractPort(argv[1]);
 int server = createServerSocket(port);
 cout << "Server listening on port " << port << "." << endl;
 ThreadPool pool(16);
 map<string, vector<string>> cache;
 mutex cacheLock;
 while (true) {
 struct sockaddr_in address;
 // used to surface IP address of client
 socklen_t size = sizeof(address); // also used to surface client IP address
 bzero(&address, size);
 int client = accept(server, (struct sockaddr *) &address, &size);
 char str[INET_ADDRSTRLEN];
 cout << "Received a connection request from "
 << inet_ntop(AF_INET, &address.sin_addr, str, INET_ADDRSTRLEN) << "." << endl;
 pool.schedule([client, &cache, &cacheLock] {
 publishScrabbleWords(client, cache, cacheLock);
 });
 }
 return 0; // server never gets here, but not all compilers can tell
}

Roslyn Michelle Cyrus | Stanford University 17

Networking: Word Finder
● The second and third arguments to accept are used to surface the IP address of the client.
● Ignore the details around how I use address, size, and the inet_ntop function until next time, when we'll

talk more about them. Right now, it's a neat-to-see!
● Each request is handled by a dedicated worker thread within a ThreadPool of size 16.
● The thread routine called publishScrabbleWords will rely on our subprocess function to marshal plain

text output of scrabble-word-finder into JSON and publish that JSON as the payload of the HTTP response.
● The next few slides include the full implementation of publishScrabbleWords and some of its helper

functions.
● Most of the complexity comes around the fact that I've elected to maintain a cache of previously processed

letter racks.

Reading: B&O’s Network Programming chapter

Roslyn Michelle Cyrus | Stanford University 18

Networking: Word Finder
Reading: B&O’s Network Programming chapter

static void publishScrabbleWords(int client, map<string, vector<string>>& cache, mutex& cacheLock) {
 sockbuf sb(client);
 iosockstream ss(&sb);
 string letters = getLetters(ss);
 sort(letters.begin(), letters.end());
 skipHeaders(ss);
 struct timeval start;
 gettimeofday(&start, NULL); // start the clock
 cacheLock.lock();
 auto found = cache.find(letters);
 cacheLock.unlock(); // release lock immediately, iterator won't be invalidated by competing find calls
 bool cached = found != cache.end();
 vector<string> formableWords;
 if (cached) {
 formableWords = found->second;
 } else {
 const char *command[] = {"./scrabble-word-finder", letters.c_str(), NULL};
 subprocess_t sp = subprocess(const_cast<char **>(command), false, true);
 pullFormableWords(formableWords, sp.ingestfd);
 waitpid(sp.pid, NULL, 0);
 lock_guard<mutex> lg(cacheLock);
 cache[letters] = formableWords;
 }
 struct timeval end, duration;
 gettimeofday(&end, NULL); // stop the clock, server-computation of formableWords is complete
 timersub(&end, &start, &duration);
 double time = duration.tv_sec + duration.tv_usec/1000000.0;
 ostringstream payload;
 constructPayload(formableWords, cached, time, payload);
 sendResponse(ss, payload.str());
}

Roslyn Michelle Cyrus | Stanford University 19

Networking: Word Finder
● Here's the pullFormableWords and sendResponse helper functions:

Reading: B&O’s Network Programming chapter

static void pullFormableWords(vector<string>& formableWords, int ingestfd) {
 stdio_filebuf<char> inbuf(ingestfd, ios::in);
 istream is(&inbuf);
 while (true) {
 string word;
 getline(is, word);
 if (is.fail()) break;
 formableWords.push_back(word);
 }
}

static void sendResponse(iosockstream& ss, const string& payload) {
 ss << "HTTP/1.1 200 OK\r\n";
 ss << "Content-Type: text/javascript; charset=UTF-8\r\n";
 ss << "Content-Length: " << payload.size() << "\r\n";
 ss << "\r\n";
 ss << payload << flush;
}

Roslyn Michelle Cyrus | Stanford University 20

Networking: Word Finder
● Finally, here are the getLetters and the constructPayload helper functions. I omit the implementation

of skipHeaders—you saw it with web-get—and constructJSONArray, which you're welcome to view
right here.

● Our scrabble-word-finder-server provides a single API call that resembles the types of API calls
afforded by Google, Twitter, or Facebook to access search, tweet, or friend-graph data.

●

Reading: B&O’s Network Programming chapter

static string getLetters(iosockstream& ss) {
 string method, path, protocol;
 ss >> method >> path >> protocol;
 string rest;
 getline(ss, rest);
 size_t pos = path.rfind("/");
 return pos == string::npos ? path : path.substr(pos + 1);
}
static void constructPayload(const vector<string>& formableWords, bool cached,
 double time, ostringstream& payload) {
 payload << "{" << endl;
 payload << " time: " << time << "," << endl;
 payload << " cached: " << boolalpha << cached << "," << endl;
 payload << " possibilities: " << constructJSONArray(formableWords, 2) << endl;
 payload << "}" << endl;
}

http://web.stanford.edu/class/cs110/examples/networking/scrabble-word-finder-server.cc

Roslyn Michelle Cyrus | Stanford University 21

Networking: Word Finder
● Try this in your browser!

○ Run ./scrabble-word-finder-server on a myth machine from the
/usr/class/cs110/lecture-examples/networking directory.

○ Make a note of which myth machine you’re connected to, and the port number displayed when you
run the program above (which should be port 13133).

○ Then in your browser (make sure you’re either on the Stanford network or VPN into the network),
type in:
■ http://myth[number]:13133/[stringtoparse]
■ For example, if you connected to myth63 and you want to see all the possible words that can

be formed from the string “example”, type: http://myth63:13133/example
○ Hit enter and watch the results load!

■ If you reload the first results, you should see “cached” change from false to true if that entry
wasn’t cached before.

Reading: B&O’s Network Programming chapter

http://myth63:13133/example

Roslyn Michelle Cyrus | Stanford University 22

Cool Bonus: Networking Chat
We can use netcat to send data between two computers.
In one terminal tab, run:

Reading: B&O’s Network Programming chapter

myth61$ netcat -lnkv 12345
Listening on 0.0.0.0 12345

myth66$ netcat myth61.stanford.edu 12345
hi!

This will listen for an incoming connection. In the context of servers, 0.0.0.0 means all IPv4 addresses on the
local machine. In another tab, run the following, ensuring that the host and port match the myth machine used
in the first session above (this can be on another myth or your local computer):

Whatever you enter in one terminal will be visible in the other terminal:

myth61$ netcat -lnkv 12345
Listening on 0.0.0.0 12345
Connection received on 99.73.69.255 53146
hi!

Roslyn Michelle Cyrus | Stanford University
23

End of Lecture 14

