
CS110: Principles of Computer Systems

Autumn 2021
Jerry Cain

PDF

https://web.stanford.edu/class/archive/cs/cs110/cs110.1222/lectures/01-autumn-21.pdf

Welcome to CS110: Principles of Computer Systems
I'm Jerry Cain ()

Chemistry undergrad MIT, originally chemistry Ph.D. student here, defected to CS
Senior Lecturer in CS, teaching CS106AX, CS106X, CS107, CS109, and CS110
Taught CS110 for the first time in Spring 2013, and I absolutely love teaching it!

Leveraged much of Mendel Rosenblum's CS110 materials from prior offerings
Introduced my own materials since then, and will introduce even more this
time
CS110 is still an evolving system—particularly given the upheaval that was the
2020-2021 school year—but hopefully you don't notice one bit

Started working at Facebook in 2008, still with them in an emeritus role
Learned web programming, PHP, CSS, JavaScript. Old CS107 student of mine
(class of 2004) is my manager
Have grown to understand and appreciate large systems much better as a
result of working there

jerry@cs.stanford.edu

mailto:jerry@cs.stanford.edu

Welcome to CS110: Principles of Computer Systems
Staff and Students

164 students as of September 19th at 5:30 pm (only expected 100, cause 8:30am)
7 graduate student CA's at the moment
Sophie, Patrick, Ayelet, Julia, Victor, Swayam, Joel
We’re working on getting at least one more CA. We can never have enough!

Soft Prerequisites
Each of you should know C and C++ reasonably well so that you can...

write moderately complex programs
read and understand portions of large code bases
trace memory diagrams and always win!

Each of you should be fluent with Unix, gcc, valgrind, and make to the extent
they're covered in CS107 or its equivalent.

CS110 Class Resources
Course Web Site:

Very simple, optimized to surface exactly what you need and nothing else
Check the website for information about upcoming lectures, assignment handouts,
discussion sections, and links to slide decks like those you're working through right
now

Online Student Support
 (for the questions that require staff response)

I'm likely to set up a Slack channel as well, but if I do, it'll be set up to foster chatty
silliness

Office Hours
I'll be holding in-person office hours on Wednesdays in a location TBD. I'll also
pop online for some of the online office hours we'll be providing as well.
CA's will soon provide a full matrix of office hours. Some will be in person, and
others will be virtual.
Office hours are not for debugging your assignments, and the CA's have been
instructed to never look at code, except for Assignment 1, which is designed to get
everyone from varying backgrounds up to speed so that Assignments 2 through 6
all go brilliantly.

https://cs110.stanford.edu

Edstem

https://cs110.stanford.edu/
https://edstem.org/us/join/HAa7g4

CS110 Class Resources
Two Textbooks

First textbook is other half of CS107 textbook
" ", by Bryant and O'Hallaron
Stanford Bookstore stocks custom version of just the four chapters needed for
CS110, and that custom version can be purchased online from the Bookstore,
and they’ll ship it right to you.

Second textbook is more about systems-in-the-large, less about implementation
details

" ", by Jerome H. Saltzer
and M. Frans Kaashoek
Provided free-of-charge online, chapter by chapter. Not stocked at Stanford
Bookstore by design. You can buy a copy of it from Amazon if you want.
Very few reading assignments from this one, so there's no advantage of owning
your own copy.

Computer Systems: A Programmer's Perspective

Principles of Computer System Design: An Introduction

https://www.amazon.com/Computer-Systems-Programmers-Perspective-Edition/dp/013409266X
https://www.amazon.com/Principles-Computer-System-Design-Introduction/dp/0123749573

CS110 Class Resources
Lectures and Lecture Examples

We will meet every Monday, Wednesday, and Friday from 8:30am to 9:30am.
Lectures are generally driven by coding examples, and all coding examples can be
copied/cloned into local space so you can play and confirm they work properly
Code examples are developed and tested on the myth machines, which is where
you'll complete all of your CS110 assignments
The accumulation of all lecture examples will be housed in a git repository at
/usr/class/cs110/lecture-examples, which you can initially git clone, and then
subsequently git pull to get the newer examples as I check them in

Lecture Slides
We rely on slides like these when we need to press through lots of information not
driven by coding examples

All lectures will have them. They'll be organic, in that we'll inject updates and
clarifications (and be clear we added stuff when it really impacts you).

CS110 Class Resources
CS110A: Problem Solving Lab for CS110

CS110A is a one-unit supplementary discussion section designed to foster
additional community and establish a bedrock foundation in systems
programming.

CS110A is relatively new and is based on one of the School of Engineering's
Equity and Inclusion Initiatives.
CS110A meets once a week, on Sundays at 2:00pm for two hours.

We limit enrollment—that limit is currently 20—so that CS110A students can more
readily interact with a supportive and empathetic cohort and more easily access the
time and attention of the course staff (particularly me and the CS110A CA, Amrita
Kaur).
We're particularly eager to accept students who have not had as much priori
exposure to CS and who may question their ability to do well in CS110 unless they
have this added support.
Students interested in taking CS110A must submit an application by Friday,
September 24th, and CS110A formally begins on Sunday, September 26th. You’ll
know by Sunday morning whether you’ve been accepted and offered a spot under
the CS110A wing.

Course Syllabus
Overview of Linux Filesystems

Linux and C libraries for file manipulation: stat, struct stat, open, close, read, write,
readdir, struct dirent, file descriptors, regular files, directories, soft and hard links,
programmatic manipulation of them, implementation of ls, cp, find, and other core
Unix utilities you probably never realized were plain old C programs
Naming, abstraction and layering concepts in systems as a means for managing
complexity, blocks, inodes, inode pointer structure, inode as abstraction over
blocks, direct blocks, indirect blocks, doubly indirect blocks, design and
implementation of a file system

Unix Filesystem Inode Design []source

https://people.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html

Google File System []source

Facebook's First Generation Haystack []source

Course Syllabus

https://en.wikipedia.org/wiki/Google_File_System
https://www.slideshare.net/GaoYunzhong/study-notes-facebook-haystack

Course Syllabus
Multiprocessing and Exceptional Control Flow

Introduction to multiprocessing, fork, waitpid, execvp, process ids, interprocess
communication, context switches, user versus kernel mode, system calls and how
their calling convention differs from those of normal functions
Protected address spaces, virtual memory, virtual to physical address mapping,
scheduling
Concurrency versus parallelism, multiple cores versus multiple processors,
concurrency issues with multiprocessing, signal masks

Browser Architecture []source

https://levelup.gitconnected.com/how-web-browsers-use-processes-and-threads-9f8f8fa23371

Course Syllabus
Threading and Concurrency

Sequential programming, desire to emulate the real world within a single process
using parallel threads, free-of-charge exploitation of multiple cores (8 per myth
machine, 12 - 16 per wheat machine, 16 per oat machine), pros and cons of
threading versus forking
C++ threads, thread construction using function pointers, blocks, functors, join,
detach, race conditions, mutex, IA32 implementation of lock and unlock, spinlock,
busy waiting, preemptive versus cooperative multithreading, yield, sleep_for
Condition variables, condition_variable_any, rendezvous and thread
communication, wait, notify_one, notify_all, deadlock, thread starvation
Semaphore concept and semaphore
implementation, generalized counters,
pros and cons of semaphore versus
exposed condition_variable_any,
thread pools, cost of threads versus
processes

Nginx and Thread Pools []source

https://www.nginx.com/blog/thread-pools-boost-performance-9x/

Course Syllabus
Networking and Distributed Systems

Client-server model, peer-to-peer model, telnet, protocols, request, response,
stateless versus keep-alive connections, latency and throughput issues,
gethostbyname, gethostbyaddr, IPv4 versus IPv6, struct sockaddr hierarchy of
records
Ports, sockets, socket descriptors, socket, connect, bind, accept, read, simple echo
server, time server, concurrency issues, spawning threads to isolate and manage
single conversations
C++ layer over raw C I/O file descriptors, introduction to sockbuf and sockstream
C++ classes (via socket++ open source project)
HTTP 1.0 and 1.1, header fields, GET, HEAD, POST, response codes, caching

Additional Topics
MapReduce programming model, implementation strategies using multiple
threads and multiprocessing
Nonblocking I/O, where normally slow system calls like accept, read, and write
return immediately instead of blocking
select, epoll, and libev libraries all provide nonblocking I/O alternatives to
maximize CPU time using a single thread of execution within a single process

Spotify's Dataflow for Wrapped 2020 []source

Uber's Fiber: Distributed AI Computation []source

Course Syllabus

https://engineering.atspotify.com/2021/02/11/how-spotify-optimized-the-largest-dataflow-job-ever-for-wrapped-2020/
https://eng.uber.com/fiberdistributed/

CS110: Intersection of Systems Design and Art

Illustration courtesy of Ecy King, CS110 Champion, Spring 2021

Course Expectations
Discussion Sections: 5%

Everyone is expected to sign up for a weekly, 80-minute discussion section
We introduced the CS110 discussion section for the first time some 3.5 years ago,
and the general consensus is that they substantially improved the course
Section will be a mix of theoretical work, coding exercises, and advanced software
engineering etudes using gdb and valgrind
Discussion section preference forms will go live later this week, and we'll do our
best to ensure that you get placed in a discussion section that works for you.
Section attendance is required. We’re offering an array of times—all on Thursday,
with in person and online options—that will hopefully work for everyone.
Your total discussion section grade is 100%. However, every time you miss a
section, your discussion section grade counts a little less and your assessment
average counts a little more. See the for details.

Concept Checks: 5%
 You're to submit answers to a collection of questions posted after each lecture.
Concept checks are posted by 5pm on Monday, Wednesday, and Friday, and you
have a week to complete them. The late penalty is trivial, so be sure to submit all of
them, even if you absentmindedly miss a deadline.
All concept checks count equally, and you can submit as often as needed until you
get everything correct.

Course Information Handout

https://cs110.quip.com/UrMXALgOsN5a/Autumn-2021-CS110-Course-Information

Course Expectations
Programming Assignments: 60%

Expect six assignments.
For Assignments 3, 4, and 5, you may pair up with one other CS110 student and
jointly arrive at a single solution that you submit once on behalf of both of you.
Some assignments are a single file, others are significant code bases you'll extend
and update.
Regardless of your overall average, you must get 70% of the points on each of the
six assignments in order to pass the class. See resubmission policy below!

Late policy is different than it is for many other CS classes.
If you submit on time, you can get 100% of the points. How's that for fair?
If you can't meet the deadline, you can still submit up to 24 hours later, but your
overall score is capped at 95%.
If you need more than 24 additional hours to submit, you can submit up to 48
hours later, but overall score is capped at 90%.
If you need to submit more than 48 hours late, you can, but you need to message
Jerry saying so. Your overall score will be capped at a 85%.

Anyone who gets fewer than 85% of the functionality points on an assignment will be
permitted to re-submit that assignment to recover all of the lost points, up to 85%.

Course Expectations
Self-Assessments: 30%

There are no traditional exams at all this quarter
The university cancelled traditional finals for all of last, citing a distaste for
anything high-stakes that might cause undue stress for those who are
geographically and situationally disadvantaged.
I'm not wholly convinced this quarter will be even close to normal, so I'm not
quite ready to bring the in-classroom exam back yet.
I'm sticking with low-stakes assessments as opportunities to gauge how well
you understand the accumulation of topics taught so far.

We'll have three of them, and they'll go the Fridays of Week 3, 6, and 8.
Each self-assessment will be timed: once you download it, you'll have three
hours to complete and submit it.
We will, however, give you a 72-hour stretch of time during which you
choose what three-hour block works best for you.
The self-assessments will be graded using a square-rooting scheme I
describe in the .Course Information Handout

https://cs110.quip.com/UrMXALgOsN5a/Autumn-2021-CS110-Course-Information

Honor Code
Please take it seriously, because the CS Department does

The following are clear no-no's for CS110 assignments
Looking at another person’s CS110 code
Showing another student your code
Discussing assignments in such detail that you duplicate a portion of someone
else's code in your own program
Uploading your code to a public repository (e.g. github) so others can find it
If you'd like to upload your code to a private repository, you can do so on
github or some other hosting service that provides free private hosting

Self-assessments are open book, open notes, open WWW, though you may not actively
collaborate with others in person or online. In general, you can only rely on materials
that are discoverable by all students via search engines.

