
Spring 2015 May 5th, 2015

CS110 Practice Midterm 2 Solution

Solution 1: File Systems Redux

Your answers to the following questions should be 50 words or less. Responses longer than 50
words will receive 0 points. You needn’t write in complete sentences provided it’s clear what
you’re saying. Full credit will only be given to clear, correct, complete, relevant responses. Just
because everything you write is technically true doesn’t mean you get all the points.

a. The block layer of a file system needs to keep track of which blocks are allocated and which

ones aren’t. One scheme sets aside a portion of the underlying device to store a bitmap,
where a single bit notes that some block is free if it’s 0, or allocated if it’s 1. The 0th bit tracks
the allocation status of the 0th block beyond the bitmap, the 1th bit tracks the allocation status
of the 1th block, and so forth. Another scheme might thread all of the unallocated blocks into
a linked list (called a free list), where the first four bytes (i.e. the improvised next pointer) of
each unallocated block store the block number of the next unallocated block in the free list,
and so forth. The super block could store the block number of the first unallocated block in
this list, and the last unallocated block could store 0 in its next pointer to signal the end of
the free list.

Briefly present one advantage of each approach.

Advantages of the bitmap scheme:

• no lseek required
• more cache friendly

Advantages of the free list approach:

• zero memory footprint/overhead (clearly the better answer of the two I’m
presenting)

• arguably simpler to implement (though eventually both of these are equally easy to
implement, so this is the weaker of the two answers)

b. If block sizes are 1024 (or 210) bytes and inodes are 32 (or 25) bytes, what percentage of the
storage device should be allocated for the inode table if we never want to run out of inodes?
Your answer can be approximate, and the 50-words-or-less defense of your answer should
include the necessary math. Assume that all files require at least one block of payload, and
assume a minimum storage device size of 1 terabyte (or 240 bytes).

Chris Gregg

Chris Gregg
1

 2

One block of inodes can lead to 25 files, each with at least one block. 1 out of every 25
blocks must store inodes. That’s ~3%. (Arguments involving 16 bytes of dirent
structure are also good, but remember that answer only needed to be approximate.)

c. A soft symbolic link is an alias for another pathname (e.g. cs110 is a soft symbolic link in

my home directory that aliases /usr/class/cs110). Identify two of the layers
contributing to your assign1 file system you would need to change (and how you would
change them) to support this new file type.

• inode layer would need to change to include a new file type
• pathname layer would need to change to replace the symbolic link component with

its expansion
• other layers might be impacted, but above two layers require the most obvious

changes.

d. A variant of the open system call—called openat—is equivalent to open unless the path
argument is relative. In the case where the provided path argument is relative, the file to be
opened is relative to the directory associated with the provided descriptor (instead of the
current working directory). Leveraging your understanding of how open works with the file
descriptor tables, the file entry table, and vnode entry table, and the layers of the file system,
briefly explain how openat might be implemented.

int openat(int fd, const char *path, int oflag, ...);

If path is absolute, ignore fd and resolve as usual.
If path is relative, drill through fd to file entry to vnode entry to get companion inode
number (not the same as the fd), and use that inode number as the start inode (instead of
IROOT_NUMBER).

e. Describe a simple modification to your assign1 file system that would allow arbitrarily
large file names while respecting the fact that most file names are short. We’d like the
directory file payload to be reasonably compact.

If the file name is 14 or more characters, let the companion inumber refer to a new type
of inode (similar to that used for symlinks in part 2b) or let it identify a block (or the head
of a linked list of blocks) containing the full string.

 3

Solution 2: Control Flow, Processes, and Signals

a. Consider the following C program and its execution. Assume all processes run to
completion, all system and printf calls succeed, and that all calls to printf are atomic.
Assume nothing about scheduling or time slice durations.

int main(int argc, char *argv[]) {
 pid_t pid;
 int counter = 0;
 while (counter < 2) {
 pid = fork();
 if (pid > 0) break;
 counter++;
 printf("%d", counter);
 }

 if (counter > 0) printf("%d", counter);

 if (pid > 0) {
 waitpid(pid, NULL, 0);
 counter += 5;
 printf("%d", counter);
 }

 return 0;
}

• List all possible outputs

 Possible Output 1: 112265
 Possible Output 2: 121265
 Possible Output 3: 122165

• If the > of the counter > 0 test is changed to a >=, then counter values of zeroes
would be included in each possible output. How many different outputs are now
possible? (No need to list the outputs—just present the number.)

18 [or 6 times whatever your answer to the first part were.]

b. Now consider this next program and its execution. Again, assume that all processes run to

completion, all system and printf calls succeed, and that all calls to printf are atomic.
Assume nothing about scheduling or time slice durations.

static void bat(int unused) {
 printf("pirate\n");
 exit(0);
}

int main(int argc, char *argv[]) {
 signal(SIGUSR1, bat);
 pid_t pid = fork();

 if (pid == 0) {
 printf("ghost\n");

 4

 return 0;
 }

 kill(pid, SIGUSR1);
 printf("ninja\n");
 return 0;
}

For each of the five columns, write a yes or no in the header line. Place a yes if the text
below it represents a possible output, and place a no otherwise. (Criteria: 1 point for each
correct answer!)

yes! yes! no! no! no!
ghost
ninja
pirate

pirate
ninja

ninja
ghost
pirate

ninja
pirate
ninja

ninja
pirate
ghost

Solution 3: thyme

The thyme program runs another program in a child process, and once the child process
finishes, thyme publishes the number of seconds it took for the child process to run from start to
finish. Assume, for instance, that I can invoke the make executable directly to compile two
target programs like this:

myth15> make fd-puzzle fork-puzzle
gcc -g -Wall -pedantic -O0 -std=gnu99 -c -o fd-puzzle.o fd-puzzle.c
gcc fd-puzzle.o -o fd-puzzle
gcc -g -Wall -pedantic -O0 -std=gnu99 -c -o fork-puzzle.o fork-puzzle.c
gcc fork-puzzle.o -o fork-puzzle

I can do precisely the same thing using thyme to execute make fd-puzzle fork-puzzle,
get the same output and generate the same compilation products, and also get the number of
seconds it took to execute make using this:

myth15> thyme make fd-puzzle fork-puzzle
gcc -g -Wall -pedantic -O0 -std=gnu99 -c -o fd-puzzle.o fd-puzzle.c
gcc fd-puzzle.o -o fd-puzzle
gcc -g -Wall -pedantic -O0 -std=gnu99 -c -o fork-puzzle.o fork-puzzle.c
gcc fork-puzzle.o -o fork-puzzle
Elapsed time: 0.103602930 sec

To compute timing information, you should rely the following type and function declarations:

struct timespec {
 long tv_sec; // seconds amount
 long tv_nsec; // nanoseconds amount
};

int clock_gettime(clockid_t clk_id, struct timespec *ts); // ignore return value
void print_elapsed_time(const timespec *start, const timespec *finish);

 5

The first argument to clock_gettime should always be the constant CLOCK_REALTIME, and
the second argument should be the address of a legitimate timespec record that, because the
first argument is CLOCK_REALTIME, is populated with the number of seconds and nanoseconds
that have elapsed since January 1st, 1970 at midnight. The print_elapsed_time function
computes the difference between the two records addressed by start and finish and prints
that difference on its own line in the format you need, as with Elapsed time: 0.103602930
sec.

Implement the full thyme.c program. Your implementation should execute the program being
timed, wait for it to finish, and then print how long it took. (You may not use system,
mysystem, popen, subprocess, or any other functions implemented in terms of fork,
execvp, and so forth. You must explicitly call fork, execvp, etc. in the code you write.)

Solution 3: thyme

int main(int argc, char *argv[]) {
 struct timespec start;
 clock_gettime(CLOCK_REALTIME, &start);
 pid_t pid = fork();
 if (pid == 0) execvp(argv[1], argv + 1);
 waitpid(pid, NULL, 0);
 struct timespec finish;
 clock_gettime(CLOCK_REALTIME, &finish);
 print_elapsed_time(&start, &finish);
 return 0;
}

Solution 4: Multiprocessing Redux

Your answers to the following questions should be 50 words or less. Responses longer than 50
words will receive 0 points. You needn’t write in complete sentences provided it’s clear what
you’re saying. Full credit will only be given to clear, correct, complete, relevant responses. Just
because everything you write is technically true doesn’t mean you get all the points.

a. Recall that one vnode table and one file entry table are maintained on behalf of all

processes, but that each process maintains its own file descriptor table. What problems
would result if just one file descriptor table were maintained on behalf of all processes?

All processes would be able to read and/or write to all other processes’ files by polling all
possible file descriptors. Huge security issues abound.

b. Give an example of a system call (with clear argument values) that might (but might not)

move the calling process to the blocked queue, and give an example of a system call (with
clear argument values) that will definitely move the calling process to the blocked queue.

May or may not: waitpid(-1, NULL, 0) might return immediately without blocking,
because there are no child processes, or it might wait years for the only child process to

 6

finish. (Other examples include read, write, and any other that’s dependent on some
resource that may or may not be available.)

Definitely will: sleep(1)

c. Why are the pages used to map virtual addresses to physical ones typically a perfect power
of 2 in size?

Virtual pages of size 2n are trivially mapped to physical pages of size 2n by masking upper
64 - n bits and replacing with something else, while the lower n bits can be left alone as
the offset within page. Other sizes require complicated, computationally expensive
mapping schemes.

d. Recall the implementation of the subprocess routine and test program we presented in
lecture to illustrate how the pipe function worked:

 subprocess_t subprocess(const char *command) {
 int fds[2];
 pipe(fds);
 subprocess_t process = { fork(), fds[1] };
 if (process.pid == 0) {
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 close(fds[1]);
 char *argv[] = {"/bin/sh", "-c", (char *) command, NULL};
 execvp(argv[0], argv);
 }
 close(fds[0]);
 return process;
 }

 int main(int argc, char *argv[]) {
 subprocess_t sp = subprocess("/usr/bin/sort");
 const char *words[] = { "f", "u", "s", "h", "p", "a", "s", "i" };
 for (size_t i = 0; i < 8; i++) dprintf(sp.infd, "%s\n", words[i]);
 close(sp.infd);
 waitpid(sp.pid, NULL, 0);
 return 0;
 }

Explain why the test program would stall without printing anything if the implementation of
subprocess accidentally omitted its three calls to close.

The close(sp.infd) within the test program can only send EOF to the subprocess
(and signal the end of input that sort must process) if the reference count within the
relevant file entry drops from a 1 to a 0. That doesn’t happen if other processes reference
the file entry.

